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1 Overview

Polyhedral computation deals with various computational problemsassociated with convex
polyhedra in general dimension. Typical problems include the representation conversion
problem (between halfspace and generator representations), the redundancy removal from
representations, the construction of hyperplane arrangements and zonotopes, the Minkowski
addition of convex polytopes, etc.

In this lecture, we study basic and advanced techniques for polyhedral computation in
general dimension. We review some classical results on convexity and convex polyhedra
such as polyhedral duality, Euler's relation, shellability, McMullen's upper bound theorem,
the Minkowski-Weyl theorem, face counting formulas for arrangements. Our main goal is
to investigate fundamental problems in polyhedral computation from both the complexity
theory and the viewpoint of algorithmic design. Optimization methods, in particular, linear
programming algorithms, will be used as essential building blocks of advanced algorithms
in polyhedral computation. Various research problems, both theoretical and algorithmic,
in polyhedral computation will be presented. The lecture consist ofthe following sections
which are ordered in a way that the reader can follow naturally from top to bottom.

Lectures

1. Introduction to Polyhedral Computation

2. Integers, Linear Equations and Complexity

3. Linear Inequalities, Convexity and Polyhedra

4. Integer Hull and Complexity

5. Duality of Polyhedra

6. Line Shellings and Euler's Relation

7. McMullen's Upper Bound Theorem

8. Basic Computations with Polyhedra (Redundancy, Linearity and Dimension)

9. Polyhedral Representation Conversion

10. Hyperplane Arrangements and Point Con�gurations

11. Computing with Arrangements and Zonotopes

12. Minkowski Additions of Polytopes

13. Problem Reductions in Polyhedral Computation

14. * Voronoi Diagarams and Delaunay Triangulations

15. * Diophantine Approximation and Lattice Reduction
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16. * Counting Lattice Points in Polyhedra

17. * Combinatorial Framework for Polyhedral Computation

18. Evolutions and Applications of Polyhedral Computation

19. Literatures and Software

(* planned.)

Case Studies

Matching Polytopes, Zonotopes and Hyperplane Arrangements, Bimatrix Games, Order
Polytopes, Cyclic Polytopes, etc. Note that this part is not yet integrated into the main text.
See the supplementary notes, \Case Study on Polytopes (for Polyhedral Computation)."
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2 Integers, Linear Equations and Complexity

2.1 Sizes of Rational Numbers

Whenever we evaluate the complexity of an algorithm, we use thebinary encoding length
of input data as input size and we bound the number of arithmetic operations necessary
to solve the worst-case problem instance of the same input size. Also, in order to claim a
polynomial complexity , it is not enough that the number of required arithmetic operations
is bounded by a polynomial function in the input size, but also, the largest size of numbers
generated by the algorithm must be bounded by a polynomial function in the input size.
Here we formally de�ne the sizes of a rational number, a rational vector and a rational
matrix.

Let r = p=qbe a rational number with canonical (i.e. relatively prime) representation
with p 2 Z and q 2 N. We de�ne the binary encoding size of r as

size(r ) := 1 + dlog2(jpj + 1) e+ dlog2(q+ 1) e: (2.1)

The binary encoding size of a rational vectorv 2 Qn and that of a rational matrix A 2 Qm� n

are de�ned by

size(v) := n +
nX

j =1

size(vi ); (2.2)

size(A) := mn +
mX

i =1

nX

j =1

size(aij ): (2.3)

Exercise 2.1 For any two rational numbersr and s, show that

size(r � s) � size(r ) + size(s);

size(r + s) � 2(size(r ) + size(s)):

Can one replace the constant 2 by 1 in the second inequality?

2.2 Linear Equations and Gaussian Elimination

Theorem 2.1 Let A be a rational square matrix. Then the size of its determinant is poly-
nomially bounded, and more specifically, size(det(A)) < 2 size(A).
Proof. Let p=qbe the canonical representation of det(A), let pij =qij denote that of each
entry aij of A, and let � denote size(A).

First, we observe

q �
Y

i;j

qij < 2� � 1; (2.4)

where the last inequality can be veri�ed by taking log2 of the both sides. By the de�nition
of determinant, we have

j det(A)j �
Y

i;j

(jpij j + 1) : (2.5)
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Combining (2.4) and (2.5),

jpj = j det(A)jq �
Y

i;j

(jpij j + 1) qij < 2� � 1; (2.6)

where the last inequality again is easily veri�able by taking log2 of both sides. Then it
follows from (2.4) and (2.6) that

size(det(A)) = 1 + dlog2(jpj + 1) e+ dlog2(q+ 1) e � 1 + ( � � 1) + ( � � 1) < 2�: (2.7)

Corollary 2.2 Let A be a rational square matrix. Then the size of its inverse is polynomially
bounded by its size size(A).

Corollary 2.3 If Ax = b, a system of rational linear equations, has a solution, it has one
polynomially bounded by the sizes of [A; b].

Here is a theorem due to Jack Edmonds (1967).

Theorem 2.4 Let Ax = b be a system of rational linear equations. Then, there is a
polynomial-time algorithm (based on the Gaussian or the Gauss-Jordan elimination) to find
either a solution x or a certificate of infeasibility, namely, � such that � T A = 0 and � T b6= 0 .
Proof. Let � be the size of the matrix [ A; b]. We need to show that the size of any number
appearing in the Gaussian elimination is polynomially bounded by the size of input. Here we
use the Gauss-Jordan elimination without normalization. LetbA be the matrix after applying
it for k times, that is, we have (after applying possible row and column permutations),

bA =

1 � � � k s
1 â11 0� � � 0
... 0

. . . 0
k 0 � � � 0 âkk

0 � � � 0

r 0
. . . 0 ârs

0 � � � 0

: (2.8)

Since we do not apply any normalization to nonzero diagonals, we haveâii = aii 6= 0 for all
i = 1; : : : ; k. Let K = f 1; : : : ; kg. We need to evaluate the sizes of all entries ^ars with s > k .
For r > k , one can easily see

ârs =
det( bAK [f r g;K [f sg)

det( bAK;K )
=

det(AK [f r g;K [f sg)
det(AK;K )

; (2.9)

where the last equation is valid because the elementary row operation without normalization
does not change the value of the determinant of any submatrix ofA containing K as row
indices. It follows that size(ârs ) < 4�. A similar argument yields size(ârs ) < 5� when r � k.
The same bounds for the size of the converted right hand sideb̂r follow exactly the same
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way. When the system has a solution, there is one de�ned byx i = b̂i =aii for i = 1; : : : ; k
and x j = 0 for j > k , at the last step k of the algorithm. Clearly, the size of this solution is
polynomially bounded. When the system has no solution, there is a totally zero row bAr and
b̂r 6= 0. It is left for the reader to �nd an e�cient way to �nd a succinct c erti�cate � .

Exercise 2.2 Assuming that A, b are integer, revise the Gauss-Jordan algorithm so that it
preserves the integrality of intermediate matrices and is still polynomial. (Hint: each row
can be scaled properly.)

2.3 Computing the GCD

For given two positive integersa and b, the following iterative procedure �nds the greatest
common divisor (GCD):

procedure EuclideanAlgorithm(a, b);
begin

if a < b then swapa and b;
while b6= 0 do
begin

a := a � b a=bc � b;
swapa and b;

end;
output a;

end.

Note that the algorithm works not only for integers but rationala and b.

Exercise 2.3 Apply the algorithm to a = 212 and b= 288.

Exercise 2.4 Explain why it is a correct algorithm for GCD. Analyze the complexity ofthe
algorithm in terms of the sizes of inputsa and b. How can one extend the algorithm to work
with k positive integers?

This algorithm does a little more than computing the GCD. By looking at the matrix
operations associated with this, we will see that the algorithm does much more. Let's look
at the two operations the algorithm uses in terms of matrices:

�
a; b

�
�
0 1
1 0

�
=

�
b; a

�
(2.10)

�
a; b

�
�

1 0
� b a=bc; 1

�
=

�
a � b a=bc � b; b

�
: (2.11)

It is important to note that the two elementary transformation matrices
�
0 1
1 0

�
(Swapping),

�
1 0

� b a=bc; 1

�
(Remainder) (2.12)
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are integer matrices and have determinant equal to +1 or� 1. This means that the trans-
formations preserve the existence of an integer solution to the following linear equation:

�
a; b

�
�
x
y

�
= c (i.e., ax + by = c): (2.13)

Let T 2 Z2� 2 be the product of all transformation matrices occurred during the Euclidean
algorithm applied to a and b. This means that j detTj = 1 and

�
a; b

�
T =

�
a0; 0

�
; (2.14)

wherea0 is the output of the Euclidean algorithm and thus GCD(a; b).
Now, we see how the algorithm �nds the general solution to the lineardiophantine equa-

tion:

�nd
�
x
y

�
2 Z2 satisfying

�
a; b

�
�
x
y

�
= c: (2.15)

Once the transformation matrix T is computed, the rest is rather straightforward. SinceT
is integral and has determinant� 1 or 1, the following equivalence follows.

�
9

�
x
y

�
2 Z2 :

�
a; b

�
�
x
y

�
= c

�
,

�
9

�
x0

y0

�
2 Z2 :

�
a; b

�
T

�
x0

y0

�
= c

�

,
�

9
�
x0

y0

�
2 Z2 :

�
a0; 0

�
�
x0

y0

�
= c

�
, h a0jc (a0 divides c)i :

Finally, when a0jc, let x0 := c=a0 and y0 be any integer. Then,
�
x
y

�
:= T

�
x0

y0

�
= T

�
c=a0

y0

�
(2.16)

with y0 2 Z is the general solution to the diophantine equation (2.15).

2.4 Computing the Hermite Normal Form

By extending the Euclidean algorithm (in matrix form) to a system of linear equations in
several integer variables, we obtain a procedure to solve the lineardiophantine problem:

�nd x 2 Zn satisfying Ax = b; (2.17)

where A 2 Zm� n and b 2 Zm are given. We assume thatA is full row rank. (Otherwise,
one can either reduce the problem to satisfy this condition or show that there is nox 2 Rn

satisfying Ax = b. How?)
Note that a seemingly more general problem of rational inputsA and b can be easily

scaled to an equivalent problem with integer inputs.

Theorem 2.5 There is a finite algorithm to find an n � n integer matrix T with j detTj = 1
such that A T is of form [B 0], where B = [ bij ] is an m � m nonnegative nonsingular lower-
triangular integer matrix with bii > 0 and bij < bii for all i = 1; : : : ; m and j = 1; : : : ; i � 1.
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This matrix [ B 0] is known as theHermite normal form, and it will be shown that it is
unique.

Corollary 2.6 The linear diophantine problem (2.17) has no solution x if and only if there
is z 2 Qm such that zT A is integer and zT b is fractional.

Proof. The \if" part is trivial. To prove the \only if" part, we assume that ∄x 2 Zn :
A x = b. Let T be the integer matrix given by Theorem 2.5. Becausej detTj = 1, we have
the following equivalence:

h∄x 2 Zn : A x = bi , h ∄x0 2 Zn : A T x0 = bi , h ∄x0 2 Zn : [B 0] x0 = bi

,


B � 1b is not integer

�
:

SinceB � 1b is not integer, there is a row vectorzT of B � 1 such that zT b is fractional. Since
B � 1A T = [ I 0], we know that B � 1A = [ I 0] T � 1 and it is an integer matrix asj det Tj = 1.
This implies that zT A is integer. This completes the proof.

As for the single diophantine equation, one can write the general solution to the linear
diophantine problem (2.17).

Corollary 2.7 Let A 2 Qm� n be a matrix of full row rank, b2 Qm , and A T = [ B 0] be an
Hermite normal form of A. Then the following statements hold.

(a) The linear diophantine problem (2.17) has a solution if and only if B � 1b is integer.

(b) If B � 1b is integer, then the general solution x to (2.17) can be written as

x = T
�
B � 1b

z

�
; (2.18)

for any z 2 Zn� m .

Now, we are going to prove the main theorem, Theorem 2.5.

Proof. (of Theorem 2.5). Extending the operations we used in (2.12), our proof of
Theorem 2.5 involves three elementary matrix (column) operations on A:

(c-0) multiplying a column of A by � 1;

(c-1) swapping the positions of two columns ofA;

(c-2) adding an integer multiple of a column to another column ofA.

Both (c-1) and (c-2) were already used and (c-0) is merely to dealwith negative entries which
are allowed inA. Each operation can be written in formA T , whereT is aunimodular matrix,
i.e., an integer matrix of determinant equal to� 1 or 1.

The algorithm operates on the �rst row, the second and to the lastrow. We may assume
that we have already transformed the �rstk(� 0) rows properly, namely, we have a sequence
of matricesT1, T2,..., Ts such that T = T1T2 � � � Ts and

Ak := A T =
�
B 0 0
C A0

�
(2.19)
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whereB 0 is a k � k matrix which is already in the form required for the �nal B , namely, it
is a nonnegative nonsigular lower-triangular integer matrix withb0

ii > 0 and b0
ij < b0

ii for all
i = 1; : : : ; k and j = 1; : : : ; i � 1. Now we process thekth row of Ak , and essentially the �rst
row of A0. The �rst row of A0 contains n � k integers and the rest is written byA00:

A0 =
�
a0

11; a0
12; : : : ; a0

1(n� k)

A00

�
(2.20)

Now we apply the Euclidean algorithm to �nd the GCD, say� , of the n � k integers. For
this, we �rst use (c-0) operations to make the numbers all nonnegative. Then remaining
operations are straightforward with (c-1) and (c-2) to convertthe �rst row to [ �; 0; 0; : : : ; 0].
This in the form of the whole matrix Ak looks like (for someT0),

Ak T0 =

2

4
B 0 0

C
�; 0; 0; : : : ; 0

A000

3

5 : (2.21)

Note that � is strictly positive because of the full row rank assumption. Finally, we can
reduce the entries in the �rst row ofC by adding some integer multiples of� in the (k + 1)st
column (for someT00) as

Ak T0 T00=

2

4
B 0 0

c0
11; : : : ; c0

1k �; 0; 0; : : : ; 0
C00 A000

3

5 ; (2.22)

so that all entriesc0
11; : : : ; c0

1k are smaller than� . Now we have made the principal (k + 1) �
(k + 1) matrix in the form of the �nal B . This completes the proof.

While the algorithm is �nite, it is not clear how good this is. It has been observed that
the largest size of numbers appearing during the course of the algorithm grows rapidly. There
are ways to make the procedure polynomial. We will discuss this issue later.

Example 2.1 The following small example is simple enough to calculate by hand.

A =
�

� 8 10 � 4
� 4 � 2 8

�
;

A1 =
�

2 0 0
14 20 � 36

�
;

A2 = [ B 0] =
�

2 0 0
2 4 0

�
:

The transformation matrix T with A2 = A T is

T =

2

4
6 � 2 9
7 � 2 10
5 � 1 7

3

5 :
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Example 2.2 The following small example (randomly generated) shows how numbers grow
rapidly. Of course, this example is not meant to be computed by hand.

A =

2

6
6
4

� 100 � 32 140 168 147
68 � 16 � 125 168 7

� 12 � 28 � 50 147 � 133
� 60 64 � 65 28 28

3

7
7
5 ;

A1 =

2

6
6
4

1 0 0 0 0
� 523 944 159 320 1976
� 115 604 54 151 388

976 � 2080 � 565 � 156 � 3652

3

7
7
5 ;

A2 =

2

6
6
4

1 0 0 0 0
0 1 0 0 0

� 1489619 � 2848 � 495 5739 � 1722
� 37305137 � 71331 � 6180 143636 � 29988

3

7
7
5 ;

A3 =

2

6
6
4

1 0 0 0 0
0 1 0 0 0
1 2 3 0 0

� 299296004657� 572624931 � 602688 309680 1400700

3

7
7
5 ;

A4 = [ B 0] =

2

6
6
4

1 0 0 0 0
0 1 0 0 0
1 2 3 0 0

43 129 12 140 0

3

7
7
5 :

The transformation matrix T with A4 = A T is

T =

2

6
6
6
6
4

� 807814365429333� 1545542680854� 1626716396 � 377867 1101240
� 1448925874428057� 2772142804282� 2917738997 � 677754 1975225
� 731120268289411� 1398808473625� 1472275536 � 341992 996688
� 365381147997122 � 699061793372 � 735777339 � 170912 498100

248937455097979 476277073276 501291704 116444� 339360

3

7
7
7
7
5

:

Observation 2.8 In the example above, the numbers appearing during the course of the al-
gorithm seem to grow. This is a fact commonly observed. Yet, it is not known if our algorithm
is exponential. There are ways to modify the algorithm so that it runs in polynomial-time.

Exercise 2.5 Write a computer program to compute a Hermite normal form of anyinteger
matrix A of full row rank. For this, one needs to use an environment where in�nite precision
integer arithmetic is supported, e.g., C/C++ with GNU gmp, Mathematica, Maple, and
Sage.
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2.5 Lattices and the Hermite Normal Form

There is a close relationship between the Hermite normal form of a matrix A 2 Qm� n and
the lattice generated by (the columns of)A. Recall that the lattice L(A) generated byA is
de�ned by

L(A) = f y : y = Ax; x 2 Zng: (2.23)

The lattice L(A) is full dimensional if it spans the whole spaceRm , or equivalently, A is full
row rank.

Lemma 2.9 Let A be rational matrix of full row rank with Hermite normal form [B 0]
Then, L(A) = L([B 0]).
Proof. This follows directly from the fact that A T = [ B 0] for some unimodular matrix
T.

Theorem 2.10 Let A and A0 be rational matrices of full row rank with Hermite normal
forms [B 0] and [B 0 0], respectively. Then the matrices A and A0 generate the same lattice
(i.e. L(A) = L(A0)) if and only if B = B 0.
Proof. Clearly, the su�ciency is clear: if B = B 0, L(A) = L(A0).

Assume that L := L(A) = L(A0). Then, by Lemma 2.9,L = L(B) = L(B 0). Now we
show that the kth columns B �k and B 0

�k are equal fork = 1; : : : ; n. First, observe that B �k

and B 0
�k are in L with the property (*) that the �rst ( k � 1) components are all zero and

the kth component is positive. BecauseB is in Hermite normal form, it follows that B �k is
a vector in L satisfying (*) with its kth component being smallest possible. Since the same
thing can be said aboutB 0

�k , bkk = b0
kk for k = 1; : : : ; n. In addition, becauseB is in Hermite

normal form, B �k is a lexicographically smallest vector of nonnegative components satisfying
(*), and so is B 0

�k . Such a vector is unique, and thusB �k = B 0
�k .

Corollary 2.11 Every rational matrix of full row rank has a unique Hermite normal form.

A basis of a full dimensional lattice L(A) is a nonsingular matrixB such that L(A) =
L(B). A direct consequence of Theorem 2.5 is

Corollary 2.12 Every rational matrix of full row rank has a basis.

Exercise 2.6 Let A be a rational matrix of full row rank, let B be a bases ofL(A) and
let B 0 be a nonsingularn � n matrix whose column vectors are points inL(A). Show the
following statements are valid:

(a) j det(B)j � j det(B 0)j.

(b) B 0 is a basis ofL(A) if and only if j det(B)j = j det(B 0)j.

Using the fact (a) above, we show that the size of the Hermite normal form is small.
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Theorem 2.13 The size of the Hermite normal form of a rational matrix A of full row rank
is polynomially bounded by size(A).
Proof. Let [B 0] be the Hermite normal form ofA, and let B 0 be any basis (i.e. nonsingu-
lar m� m submatrix) of A (which is not necessarily a basis ofL(A)). First of all, det( B) > 0.
By Exercise 2.6 (a), we have det(B) � j det(B 0)j. By Theorem 2.1, this inequality implies
that the size of det(B) is polynomially bounded by size(A).

SinceB is lower triangular, det(B) is the product of diagonal entriesbii , (i = 1; :::; n). It
follows that the size of each entrybii is less than the size of det(B), and thus is polynomially
bounded by size(A). SinceB is in Hermite normal form, each nondiagonal entrybij is less
than or equal to bii and has the same property.

The theorem above suggests that the Hermite Normal Form might be computable in
polynomial time. In fact, there are methods to control the largest size of numbers generated
during the course of the algorithm given in the previous section.

One such algorithm is as follows. First of all, a given matrixA of full row rank, is enlarged
to

bA :=

2

6
4

M 0 � � � 0

A 0
.. . 0

0 � � � 0 M

3

7
5 ; (2.24)

where M is set to be the positive integerj det(B 0)j for an arbitrarily chosen basisB 0 of A.
The �rst observation is that this new matrix generates the same lattice asA.

Exercise 2.7 Show that L( bA) = L(A).

Thus, computing the Hermite normal form of bA is equivalent to that of A. Now, since we
have the added columns, it is possible to reduce the entries appearing in the �rst n columns
by adding proper multiples of the lastm columns, so that all entries are nonnegative and
at most M . This reduction should be applied before the Euclidean algorithm is applied to
each row. Since size(M ) is polynomially bounded by size(A), one can control the number
of arithmetic operations and the size of numbers appearing in the application of Euclidean
algorithm applied to each row ofbA.

The sources of the ideas and more detailed discussion can be found inShrijver's book
[47, Section 5.3]. One important consequence of Theorem 2.13 , Corollary 2.3 and Theorem
2.4 is the following.

Corollary 2.14 For any rational matrix A of full row rank, there is a transformation matrix
T such that AT is the Hermite normal form of A and size(T) is polynomially bounded by the
size of A. Furthermore, such a matrix can be computed in polynomial time.
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2.6 Dual Lattices

For a lattice L in Rm , its dual lattice L � is de�ned by

L � := f y 2 Qm : yT z 2 Z; 8z 2 Lg: (2.25)

If L is generated by a matrixA,

L � = ( L(A)) � = f y 2 Qm : yT A 2 Zng: (2.26)

In terms of the Hermite normal form [B 0] of A (assuming A is full row rank), the dual
lattice is generated by the transpose (and the rows) ofB � 1, that is,

L � = L((B � 1)T ): (2.27)

Why is it so? To see that, setL0 = L((B � 1)T ) and we will showL0 = L � . SinceB � 1B = I
and L is generated by (the columns of)B , each row ofB � 1 has an integer inner product
with any vector in L. This showsL0 � L � . For the converse, take any vectory in L � . Let
sT = yT B. By de�nition of L � , s 2 Zm . Observing that yT = sT B � 1, y is an integer linear
combination of the rows ofB � 1. This provesL0 � L � and completes the proof.

Example 2.3 Figure 2.1 left depicts the lattice generated byA =
�

1 1
� 1 2

�
. The Hermite

normal form isB =
�
1 0
2 3

�
and its inverse isB � 1 =

�
1 0

� 2
3

1
3

�
. While the primal lattice L(A)

is generated by the columns ofB , the dual lattice (L(A)) � is generated by the rows ofB � 1.
Figure 2.1 right depicts the dual lattices (partially) on the same scale.

-4 -2 2 4

-15

-10

-5

5

10

15

-4 -2 2 4

-15

-10

-5

5

10

15

Figure 2.1: Lattice L(A) and its Dual Lattice.
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3 Linear Inequalities, Convexity and Polyhedra

3.1 Systems of Linear Inequalities

Consider a system of rational linear inequalities

Ax � b; (3.1)

whereA 2 Qm� d and b2 Qm are given. The set

P = P(A; b) := f x 2 Rd : Ax � bg (3.2)

of solutions to the system is a subset ofRd, known as aconvex polyhedron. It is in fact a
convex set: a subsetC of Rd is said to beconvex if the line segment [u; v] := f x : x =
�u + (1 � � )v; 0 � � � 1g between any two pointsu and v in C is entirely contained inC.
A bounded convex polyhedron is called aconvex polytope.

A point x is called anextreme point of a convex setC if x 2 C and x is not on the line
segment between any two pointsu, v in C di�erent from x. Unlike general convex sets, a
convex polyhedronP contains only a �nite number of extreme points. This will be shown
in a more general form in Theorem 3.14.

Below, the �rst two are centrally symmetric polytopes inR3, and the third one is ran-
domly generated. One can interpret the third one as a bounded polyhedron (i.e. polytope)
contained in the nonnegative orthant or as an unbounded polyhedron having only its non-
negative orthant part drawn.

3.2 The Fourier-Motzkin Elimination

Consider a system (3.1) ofm linear inequalities inn variables. Solving such a system means
either to �nd a rational vector x satisfying the system or to detect inconsistency of the
system. The latter can be proven by a certi�cate given by the well-known theorem of Gale:

Theorem 3.1 (Gale's Theorem) For any A 2 Rm� d and b 2 Rm , exactly one of the
following statements holds:

(a) there exists x 2 Rd such that Ax � b;

(b) there exists z 2 Rm such that z � 0, zT A = 0 and zT b < 0.
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It is easy to see that both statements cannot hold simultaneously as it would mean 0
is less than or equal to some (strictly) negative number. Thus the nontrivial part of the
theorem is that one of (a) and (b) is always valid. There are severalconstructive proofs of
the theorem.

Here we present an arguably simplest constructive proof due to Fourier and Motzkin.
The main idea is to transform the system (3.1) to an equivalent system of the same form
with one less variables.

First we rewrite the system (3.1) by looking at the coe�cientsaid 's for the last variable
xd. Let us de�ne a partition of row indices into the three sets:

I + := f i j aid > 0g; I � := f i j aid < 0g and I 0 := f i j aid = 0g:

The system (3.1) can be rewritten by solving each inequality with respect to xd:

xd � f i (x0) 8i 2 I +

gj (x0) � xd 8j 2 I �

hk(x0) � 0 8k 2 I 0;

where x0 is the vector x with the last component eliminated, i.e. x0 = ( x1; : : : ; xd� 1)T and
each functionsf i , gj and hk denote some a�ne functions ind � 1 variables.

It is not di�cult to show (Exercise 3.1) that the system (3.1) is equivalent to the new
system ind � 1 variables:

gj (x0) � f i (x0) 8(i; j ) 2 I + � I �

hk(x0) � 0 8k 2 I 0:

This system can thus be written as

A0x0 � b0: (3.3)

Exercise 3.1 Prove the equivalence:Ax � b , A0x0 � b0.

No reason to stop here. Let's continue to eliminate the variablexd� 1, then xd� 2 and so
forth until all variables are eliminated. This generates a sequence of equivalent systems of
linear inequalities:

A(0) x(0) � b(0) (This is the original systemAx � b.)

m

A(1) x(1) � b(1) (This is A0x0 � b0 above.)

m

A(2) x(2) � b(2)

m
...

m

A(d)x(d) � b(d) ;

whereA(k)x(k) � b(k) denotes thekth system where the lastk variables have been eliminated.
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Exercise 3.2 Show that the elimination step as a matrix transformation. More precisely,
there is a matrix T (depending onA) such that the systemA0x0 � b0 is the same system as
T Ax � T b up to positive scaling. Note that the last column of the productT A is totally
zero and thusT Ax does not involve the last variablexd.

By the exercise above, the last systemA(d)x(d) � b(d) can be now written asT (d)Ax �
T (d)b. Of course, the left hand sideT (d)Ax is a vector of zero's.

Exercise 3.3 Prove Theorem 3.1 by using the matrixT (d) .

Exercise 3.4 Prove the following forms of alternative theorem using Gale's Theorem. Be-
low, the statement is read as \exactly one of the two statements (a) or (b) holds."

The Farkas Lemma

(a) 9x : A x = b and x � 0;

(b) 9z : zT A � 0 and zT b < 0.

Gordan's Theorem

(a) 9x : A x = 0 and x 
 0;

(b) 9z : zT A > 0.

Exercise 3.5 Let V be a vector subspace ofRd, let V ? be its orthogonal dual space, and let
g be any �xed index in [d]. Prove the following alternative theorem using the Farkas Lemma.
Below, the statement is read as \exactly one of the two statements (a) or (b) holds."

Selfdual Alternative Theorem

(a) 9x 2 V : x � 0 and xg > 0;

(b) 9y 2 V ? : y � 0 and yg > 0.

3.3 LP Duality

For a givenA 2 Rm� d, b2 Rm , c 2 Rd, the linear programming problem (in canonical form)
is

(P): max cT x =
P d

j =1 cj x j

subject to A x � b
P d

j =1 aij x j � bi ; 8i = 1; : : : ; m
x � 0. x j � 0; 8j = 1; : : : ; d.

We often abbreviate a linear programming problem as anLP. A vector x satisfying all the
constraints Ax � b and x � 0 is called afeasible solution. An optimal solution is a feasible
solution that attains the largest objective value. In the case of minimization problem, an
optimal solution attains the smallest value.

The set of feasible solutionsf x : Ax � b; x � 0g is called the feasible region. An LP is
called feasible if the feasible region is not empty. An LP is calledunbounded if the objective
function cT x is not bounded above (below for the minimization case) over the feasible region.

Geometrically, the feasible region is aconvex polyhedron.
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x3

x1

x2

x3

x1

x2

In general, maximizing or minimizing a linear function subject to a system of linear inequality
constraints in d variables can be reduced to an optimization in the form above. Also, note
that no strict inequality constraint such asx1 > 0 is allowed in linear programming.

There are two fundamental theorems, the weak duality theorem and the strong duality
theorem. To state these theorems, we need to de�ne thedual problem

(D): min bT y
subject to AT y � c

y � 0

which is a linear programming problem itself. The original problem (P) is called the primal
problem when we need to distinguish it from the dual problem.

Theorem 3.2 (LP Weak Duality Theorem) For any feasible solution x for the primal
problem (P) and for any feasible solution y for the dual problem (D), cT x � bT y.

Theorem 3.3 (LP Strong Duality Theorem) If both the primal problem (P) and the
dual problem (D) are feasible, there exist a dual pair (x � ; y� ) of feasible solutions such that
cT x � = bT y� . (By the previous theorem, they are both optimal.)

The �rst theorem is very easy to prove. Thus it may not be appropriate to call it a
theorem, but since it is widely accepted to be so called. Let's prove it.

Proof. (of the Weak Duality Theorem, Theorem 3.2) Letx and y be a dual pair of feasible
solutions. Then,

cT x � (AT y)T x (becauseAT y � c and x � 0)

= yT Ax

� yT b (becauseAx � b and y � 0)

= bT y:

This completes the proof.
Now, we are ready to prove the second theorem which is much harder to prove.
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Proof. (of the Strong Duality Theorem, Theorem 3.3) Assume that both the primal
problem (P) and the dual problem (D) are feasible. We have to show that

9(x; y) :Ax � b; x � 0

AT y � c; y � 0

cT x = bT y:

(3.4)

Now, we verify the statement (3.4) is always valid under the assumption.

(3.4) ,

* 9(x; y) : Ax � b; x � 0
AT y � c; y � 0
cT x � bT y

+

(by the Weak Duality)

,

*

9
�
x
y

�
� 0 :

2

6
6
6
6
4

A 0
� I 0
0 � AT

0 � I
� cT bT

3

7
7
7
7
5

�
x
y

�
�

2

6
6
6
6
4

b
0

� c
0
0

3

7
7
7
7
5

+

,

*

6 9

2

6
6
6
6
4

s
t
u
v
w

3

7
7
7
7
5

� 0 :

2

6
6
6
6
4

s
t
u
v
w

3

7
7
7
7
5

T 2

6
6
6
6
4

A 0
� I 0
0 � AT

0 � I
� cT bT

3

7
7
7
7
5

= 0 and

2

6
6
6
6
4

s
t
u
v
w

3

7
7
7
7
5

T 2

6
6
6
6
4

b
0

� c
0
0

3

7
7
7
7
5

< 0

+

(by Gale's Thm)

,

*

6 9

2

4
s
u
w

3

5 � 0 : AT s � cw; Au � bw; bT s < cT u

+

,
�

6 9
�

s
u

�
� 0 : AT s � 0; Au � 0; bT s < cT u

�
(by the Weak Duality)

,



AT s � 0; Au � 0; s � 0; u � 0 ) bT s � cT u
�

:

Now the last step of the proof is to show the last statement above isalways true which
implies the theorem. Assume

AT s � 0; Au � 0; s � 0; u � 0:

By the assumption, we have a dual pair (x; y) of feasible solutions. Thus, we have

bT s � cT u � (Ax)T s � (AT y)T u = xT AT s � yT Au � 0 � 0 = 0:

This completes the proof.

Theorem 3.4 (Complementary Slackness Conditions) For a dual pair (x; y) of feasi-
ble solutions for (P) and (D), the following conditions are equivalent:

(a) both x and y are optimal solutions;
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(b) cT x = bT y;

(c) yT (b� Ax) = 0 and xT (AT y � c) = 0 .

(c') yi (b� Ax) i = 0 for all i and x j (AT y � c) j = 0 for all j .

(c") yi > 0 implies (b� Ax) i = 0 , for all i and
x j > 0 implies (AT y � c) j = 0 , for all j .

Proof. Left to the reader.

Exercise 3.6 Write the Complementary Slackness Conditions (Theorem 3.4) for the LP of
form maxcT x subject to Ax � b and its dual LP, and prove the validity.

3.4 Three Theorems on Convexity

Before we discuss the theory of representations and combinatorial structure of convex poly-
hedron, it is good to mention some basic facts about convexity.

For any subsetS of Rd, the convex hull conv(S) of S is the intersection of all convex sets
containing S. Since the intersection of two convex sets is convex, it is the smallest convex
set containingS.

Proposition 3.5 Let S be a subset Rd. Then

conv(S) = f x : x =
kX

i =1

� i pi ;
kX

i =1

� i = 1; � i � 0 8i = 1; : : : ; k;

for some finite points p1; : : : ; pk 2 Sg:

(3.5)

Proof. Let the RHS of (3.5) beT. One has to show both inclusions conv(S) � T and
conv(S) � T. Both inclusions are elementary and left to the reader.

One basic theorem on convexity is Carath�eodory's theorem, saying that the �niteness
condition on k in (3.5) can be much more restrictive, namely,k � d + 1.

Theorem 3.6 (Carath�eodory's Theorem) Let a point p be in the convex hull of a set S
of k points p1; : : : ; pk in Rd. Then p is in the convex hull of at most d + 1 points in S.
Proof. Left to the reader. Hint: When k � d + 2, the points p1; : : : ; pk are affinely
dependent, i.e., there exist� 1; : : : ; � k not all zero such that

P
i � i = 0 and

P
i � i pi = 0. Use

this to show that at least one point inS is unnecessary to representx.

Here are two more basic theorems on convexity.

Theorem 3.7 (Radon's Theorem) Let S be a subset of of Rd with jSj � d + 2 . Then S
can be partitioned into two sets S1 and S2 so that conv(S1) \ conv(S2) 6= ; .
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S1
S2

Proof. SincejSj � d + 2, the points in S are a�nely dependent. Use this fact to �nd a
natural partition.

Theorem 3.8 (Helly's Theorem) Let C1; C2; : : : ; Ch be convex sets in Rd such that C1 \
C2 \ � � � \ Ch = ; . Then, there is a subfamily of cardinality at most d+ 1 whose intersection
is empty.

C1

C4

C2

C3

Proof. (Clearly, the convexity assumption onCj 's is important as the theorem fails with
only one nonconvexCj above.) Use induction onh. If h � d + 1, the theorem is trivial.
Assume that the theorem is true forh < k (� d+2) and prove (*) the theorem holds forh = k.
Note that h � d + 2. Suppose the statement (*) does not hold, namely,Si := \ j 6= i Cj 6= ;
for all i = 1; : : : ; h. Apply Radon's theorem to get a contradiction.

3.5 Representations of Polyhedra

For a set f v1; : : : ; vkg of vectors inRd, de�ne their cone (or nonnegative) hull as

cone(f v1; : : : ; vkg) := f x : x =
X

i

� i vi ; � i � 0 8i = 1; : : : ; kg: (3.6)

For subsetsP and Q of Rd, their Minkowski sum P + Q is de�ned as

P + Q := f p + q : p 2 P and q 2 Qg: (3.7)

Theorem 3.9 (Minkowski-Weyl's Theorem for Polyhedra) For P � Rd, the follow-
ing statements are equivalent:

(a) P is a polyhedron, i.e., there exist A 2 Rm� d and b2 Rm for some m such that
P = f x : Ax � bg;

(b) P is finitely generated, i.e., there exist (finite) vectors vi ’s and r j ’s in Rd such that
P = conv(f v1; : : : ; vsg) + cone(f r1; : : : ; r tg).
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The statement (b) above can be written in matrix form as follows. Here, 1 denotes a
vector of all 1s.

(b) P is finitely generated, i.e., there exist two matrices V 2 Rd� s and R 2 Rd� t for some s
and t such that P = f x : x = V � + R�; � � 0; 1T � = 1; � � 0g.

Theorem 3.9 actually consists of two theorems. The direction from (a) to (b) is Minkowski's
Thoerem, while the reverse direction from (b) to (a) is Weyl's Theorem.

When a polyhedronP is bounded (thus a polytope), the minimal representation consists
of all extreme points v1, : : :, vs and no rays. Another special case ofb = 0 leads to a
homogeneous version of the theorem. It is a special case but it is actually as powerful as the
nonhomogeneous version above (Exercise 3.7).

Theorem 3.10 (Minkowski-Weyl's Theorem for Cones) For P � Rd, the following
statements are equivalent:

(a) P is a polyhedral cone, i.e., there exist A 2 Rm� d for some m such that
P = f x : Ax � 0g;

(b) P is a finitely generated cone, i.e., there exists a matrix R 2 Rd� t for some t such that
P = f x : x = R�; � � 0g.

We �rst show one direction which follows almost immediately by the Fourier-Motzkin
elimination.

Proof. (for Theorem 3.10 (b) =) (a)). Assume that P is a �nitely generated cone and
there exists a matrix R 2 Rd� t such that P = f x : x = R�; � � 0g. The conditions
x = R�; � � 0 can be considered a system of linear inequalities in variablesx and � . Thus
one can apply the Fourier-Motzkin elimination to eliminate all variables� 1, : : :, � t from
this system. The result is an equivalent system of inequalities inx variables. This is a
representation of form (a).

Let us say that a pair (A; R) of matrices is adouble description pair or simply a DD-pair
if they represent the same polyhedron, namely,

Ax � 0 , x = R�; for some� � 0: (3.8)

With this language, the Minkowski theorem says for any matrixA, there existsR such that
(A; R) is a DD-pair. The Weyl theorem states that for anyR, there existsA such that (A; R)
is a DD-pair.

Lemma 3.11 For two matrices A 2 Rm� d and R 2 Rd� t , the pair (A; R) is a DD-pair if
and only if (RT ; AT ) is a DD-pair.
Proof. Because of symmetry, we only need to show one direction. Assume the pair (A; R)
is a DD-pair, namely (3.8) is valid. Now we have to show (RT ; AT ) is also a DD-pair. Now
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we have a sequence of equivalences

RT y � 0

, � T RT y � 0; 8� � 0

, (R� )T y � 0; 8� � 0

, Ax � 0 implies xT y � 0 (by the assumption (3.8))

, ∄x : Ax � 0 and yT x > 0

, y = AT �; for some� � 0 (by Farkas' Lemma):

The equivalence of the �rst and the last statement is exactly what we needed to prove.

This lemma has a very useful consequence in computation, namely, no one needs to
implement both transformations between (a) and (b) but only one.

Proof. (for Theorem 3.10). We have already proved Weyl's theorem. On theother hand,
Lemma 3.11 says that showing one direction is su�cient to prove bothdirections. This
completes the proof.

As Lemma 3.11 indicates, there is a polyhedron associated with the pair ( RT ; AT ).
Namely, if (A; R) is a DD-pair, the polyhedral cone

P � := f y 2 Rd : RT y � 0g (3.9)

= f y 2 Rd : y = AT �; � � 0g (3.10)

is known as thedual or the dual cone of P = f x : Ax � 0g = f x : x = R�; � � 0g.

Exercise 3.7 Derive the nonhomogeneous Theorem 3.9 from the homogeneous Theorem
3.10. Hint: Homogenize a given nonhomogeneous system with an extra dimension, convert
it by the homogeneous theorem, and then get a nonhomogeneous representation.

The Fourier-Motzkin elimination is not practical for converting between two represen-
tations of polyhedra, due to the explosion of the size of intermediate systems. Methods
known as thedouble description method and the reverse search method are both much more
practical and used in many existing implementations (e.g.,lrslib , cddlib ).

3.6 The Structure of Polyhedra

For a nonempty polyhedronP in Rd, we de�ne two sets thelinearity space and the recession
cone.

lin: space(P) := f z : x + �z 2 P; 8x 2 P and 8� 2 Rg (3.11)

rec: cone(P) := f z : x + �z 2 P; 8x 2 P and 8� � 0g: (3.12)

The recession cone is also known as thecharacteristic cone. Both sets contain the origin,
and in general lin: space(P) � rec: cone(P).

A polyhedronP is calledpointed if it contains an extreme point. Here are some structural
properties of polyhedra.
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Theorem 3.12 Let be P be a nonempty polyhedron in Rd, the following statements hold:

(a) If P is written as P = Q + C for some polytope Q and some polyhedral cone C, then
C = rec: cone(P).

(b) If P is represented as P = f x : Ax � bg, then
rec: cone(P) = f z : Az � 0g and lin: space(P) = f z : Az = 0g;

(c) P is pointed if and only if lin: space(P) is trivial , i.e., lin: space(P) = f 0g;

(d) P is bounded if and only if rec: cone(P) is trivial , i.e., rec: cone(P) = f 0g.

Proof. Left to the reader.

The statement (a) of the theorem above implies that in the generator reporesentation
in Minkowski-Weyl's Theorem, Theorem 3.9 (b), the cone part cone(f r1; : : : ; r tg) is unique
while the convex hull part conv(f v1; : : : ; vsg) is clearly not.

Corollary 3.13 If P is a cone f x : Ax � 0g and pointed, then there exists a vector c such
that cT x > 0 for all nonzero x 2 P .
Proof. Set cT = � 1T A. Show that this vector satis�es cT x > 0 for all nonzerox 2 P
(Exercise).

For c 2 Rd and � 2 R, an inequality cT x � � is calledvalid for a polyhedronP if cT x � �
holds for all x 2 P. A subset F of a polyhedronP is called aface of P if it is represented
as F = P \ f x : cT x = � g for some valid inequalitycT x � � .

P

cT x = b

F

cT x = b

F

P
cT x £ b

cT x £ b

Note that both ; and P are faces, calledtrivial faces. The faces of dimension 0 are called
vertices and the faces of dimension dim(P) � 1 are calledfacets. The faces of dimensioni
are called thei -faces.

The �rst important fact on faces is that there are only �nitely many of them. It follows
from the following.

Theorem 3.14 Let P = f x 2 Rd : Ax � bg. Then a nonempty subset F of P is a face of P
if and only if F is represented as the set of solutions to an inequality system obtained from
Ax � b by setting some of the inequalities to equalities, i.e.,

F = f x : A1x = b1 and A2x � b2g; (3.13)

where A =
�

A1

A2

�
and b=

�
b1

b2

�
.
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Proof. Let F be a nonempty face. Then,F = P \ f x : cT x = � g for some valid inequality
cT x � � . The set F is the set of optimal solutions to the LP: maxcT x subject to Ax � b.
Since the LP has an optimal solution, the dual LP: minbT y subject to AT y = c; y � 0 has
an optimal solution, sayy� , by the strong duality, Theorem 3.3. Then, putA i x � bi to
be in the equality part A1x = b1 if and only if y�

i > 0. Then the resulting setF 0 = f x :
A1x = b1 and A2x � b2g coincides withF , sinceF 0 is the set of points inP satisfying the
complementary slackness conditions, see Theorem 3.4 and Exercise3.6.

The converse follows immediately by settingcT = 1T A1 and � = 1T b1, for a nonempty
set F of form (3.13).

Corollary 3.15 Every minimal nonempty face of P = f x 2 Rd : Ax � bg is an affine
subspace of form f x : A1x = b1g where A1x = b1 is a subsystem of Ax = b.
Proof. By Theorem 3.14, every nonempty faceF has a representation of form

F = f x : A1x = b1 and A2x � b2g:

AssumeF is minimal. Set F 0 = f x : A1x = b1g. We will show that F = F 0. We claim that
the inequality part A2x � b2 must be redundant in the representation ofF . Suppose some
of the inequalities can be violated by a point inF 0. Then, F 0 is not a minimal nonempty
face (why?), a contradiction.

Exercise 3.8 Show that the vertices of a polyhedron are exactly the extreme points.

Corollary 3.16 Let P = f x : Ax � bg be a rational polyhedron. Then, every nonempty
face of P contains a point of size polynomially bounded by the largest size of rows of [A; b].
Proof. Let � denote the largest size of rows of [A; b]. It is enough to show the claim for
every nonempty minimal face ofP. By Corollary 3.15, every nonempty minimal face is the
set of solutions to a systemA1x = b1, where A1x � b1 is a subsystem ofAx � b. Clearly
at most d equations inA1x = b1 are independent, and by Corollary 2.3, the system has a
solution whose size is bounded byd � � which is polynomially bounded by� .

This corollary also implies that every extreme point of a polyhedron has size polynomially
bounded by the largest size of rows of [A; b].

Theorem 3.17 Let P = f x : Ax � bg be a rational polyhedron. Then, it has a generator
representation P = conv(f v1; : : : ; vsg)+ cone(f r1; : : : ; r tg) such that each generator vi or r j

is of size polynomially bounded by the largest size of rows of the matrix [A; b].
Proof. Let P = f x : Ax � bg be a rational polyhedron, andA and b be integer. Let �
denote the largest size of rows of the matrix [A; b].

If P is bounded, the minimal generator representation is the set of extreme points and
the size of each extreme point is polynomially bounded by� . by Corollary 3.16.

If P is a pointed cone, by Corollary 3.13, the intersection ofP with the hyperplane
1T Ax = � 1 is a polytope. Clearly the extreme points of this polytope constitute a minimal
representation ofP and have size polynomially bounded by� . (The hal
ine generated by
each extreme point is called anextremal ray of this pointed cone.)

If P is a pointed polyhedron, it is the Minkowski sum of a polytope and a pointed cone,
and the �rst two cases imply the theorem.
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If P is not pointed, the linearity space is the null space ofA, the Gauss-Jordan algorithm
applied to Ax = 0 produces a generator representation of this space by linearly independent
vectors f b1; : : : ; bkg of polynomial size, using the proof of Theorem 2.4. Then, settingQ =
P \ f x : bT

i x = 0; i = 1; : : : ; kg, P = Q + lin : space(P). Now Q is pointed and it has a
generator representation of polynomially bounded size.

Remark 3.18 From the proof of Theorem 3.17, a minimal representation of a polyhedron
P consists of a set of points each of which is from a minimal nonempty face of P , a set of
vectors to generate the pointed cone which is the intersection of P with the linear subspace
orthogonal to the linearity space of P , and a set of vectors to generate the linearity space.

Corollary 3.19 For A 2 Qm� d, B 2 Qm� n and c 2 Qm , let P be the polyhedron f (x; y) 2
Rd+ n : Ax + By � cg, and let Px be the orthogonal projection of P to the x-space, i.e.,
x 2 Px if and only if (x; y) 2 P for some y 2 Rn . Then, Px admits an H-representation
f x 2 Rd : Dx � f g such that the size of each [D i ; f i ] is polynomially bounded by the largest
size of rows of the matrix [A; B; c]. Note that in general the number of rows in D may be
exponential in one of m, n and d.
Proof. Left to the reader. Hint: Using the Fourier-Motzkin Algorithm show that Px =
f x : zT Ax � zT c;8z 2 Cg for the \projection" cone C = f z 2 Rm : zT B = 0; z � 0g. Then,
apply Theorem 3.17.

3.7 Some Basic Polyhedra

A d-simplex is the convex hull ofd + 1 a�nely independent points v0; v1; : : : ; vd in Rd. The
standard d-cube is the convex hull of 2d 0=1 points in Rd, and ad-cube is any full-rank a�ne
transformation of the standardd-cube. A zonotope in Rd (generated byk generators) is the
Minkowski sum ofk line segments inRd. The standard cube is a special zonotope generated
by the d line segments [0; ej ], whereej denotes thej th unit vector.

The following table gives the number ofi -faces of ad-simplex and of ad-cube. It also
gives the tight upper bound of the number ofi -faces of a zonotope, which will be proved in
Chapter 10.
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Type Figure # Vertices # Facets # i -Faces

d-Simplex d + 1 d + 1
� d+1

i +1

�

d-Cube 2d 2d
� d

i

�
2d� i

Zonotope(d; k)

x
y

z

d = 3 and k = 5

� 2
P d� 1

i =0

� k� 1
i

�
� 2

� k
d� 1

�
O(kd� 1)

Table 3.1: Simplex, Cube and Zonotope

Exercise 3.9 Show that the formula in Table 3.1 for the number ofi -faces is correct for
d-simplices and ford-cubes.
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4 Integer Hull and Complexity

Integer linear programming or simply integer programming (abbreviated by IP) is an exten-
sitvely studied branch of optimizaton. One form of the IP is a linear programming with the
additional integer constraints on the variables.

max cT x
subject to Ax � b

x 2 Zd;
(4.1)

whereAQm� d and b 2 Qm are given. Another form more convenient for the analysis of its
complexity is the decision problem

decide whether there exists x
such that Ax � b

x 2 Zd:
(4.2)

In this chapter, we show that IP is NPC, meaning, the decision problem (4.2) is NPC. There
are two things in this statement, IP is NP-hard (i.e., at least as any problems in NP), and
IP is in NP.

The �rst part is very easy to see by the standard polynomial reduction from SAT (the
satis�ability problem). For this we take an NPC problem 3-SAT:

given a boolean expression in binaryd-variables B(x) :=
V m

i =1 Ci

where each clauseCi is a disjunction of three literals
decide there existsx 2 f 0; 1gd such that B(x)=1 :

(4.3)

The reduction is simple. To reduce this problem to an IP, we will use exactly the same
variablesx. Each x j is integer and restricted as 0� x j � 1. For each clause, for example,
(x1

W
: x2

W
x5), we set up the inequality:

x1 + (1 � x2) + x5 � 1: (4.4)

Furthermore, each variablex j is restricted as 0 � x j � 1. With all these constraints
together, we have an IP of form (4.2) which is equivalent to 3-SAT. Moreover the reduction
is polynomial.

Thus, the most critical part of the statement \IP is NPC" is, in fact, IP is in NP . More
precisely, this means that if an IP (4.2) admits a solution, there is a solution whose size is
bounded by a polynomial function of the input size size[A; b].

To see this, one important notion is the integer hull of a polyhedron.For a rational
polyhedronP = f x : Ax � bg, its integer hull is de�ned by

PI := convf x : x 2 P \ Zdg: (4.5)

Section 4.2 analyses the complexity ofPI and shows why IP is in NP. In fact, we prove
a stronger statement (in Theorem 4.3) that a feasible IP admits a solution whose size is
bounded by a polynomial function ofthe largest size of rows of [A; b].
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4.1 Hilbert Basis

The Hermite normal form [B 0] of a rational matrix A 2 Qm� d can be considered as a
minimal generating set of the latticeL(A) generated byA. Namely, the m columns ofB
form a minimal set of vectors inRm whose integer combinations generateL(A).

In this section, we are going to deal with the lattice points in a polyhedral cone. Is there
any similar basis for the integer points in a polyhedral coneC generated by rational vectors
f a1; a2; : : : ; atg? A Hilbert basis of a coneC is a �nite set of rational vectors b1; b2; : : : ; bk

such that every lattice point in the cone is a nonnegative integer combination of b1; b2; : : : ; bk .
Here we are mainly concerned with integral Hilbert basis.

Note that a Hilbert basis is sometimes called aHilbert finite generating set and then the
term Hilbert basis is used only for the ones that are (set-inclusion) minimal.

Theorem 4.1 Every rational cone admits an integral Hilbert basis. Futhermore, if it is
pointed, a (set-inclusion) minimal integral Hilbert basis is unique.
Proof. Without loss of generality, we assume a rational coneC is generated by integral
vectors a1; a2; : : : ; at in Rd, i.e., C = cone(f a1; a2; : : : ; atg). We claim that the �nite set
B = f b1; : : : ; bkg of integral vectors contained in the zonotope

Z := f x 2 Rd : x =
tX

i =1

� i ai ; 0 � � i � 1; i = 1; : : : ; tg (4.6)

is a Hilbert basis, see Figure 4.1 for an example withd = 2, t = 2 and k = 8.

! "

! #

$

%

Figure 4.1: The ConeC and the PolytopeZ .

Let p be any integral point in C. Then, we have

p =
tX

i =1

� i ai ; � i � 0; i = 1; : : : ; t; (4.7)
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for some� i (not necessarily integer). Furthermore, we have

p �
tX

i =1

b� i cai =
tX

i =1

(� i � b � i c)ai : (4.8)

First, the LHS is an integer vector. Secondly, the RHS vector, thesame vector as the
LHS, is in Z , because 0� � i � b � i c < 1. Therefore, it is an integer vector inZ which is
among b1; : : : ; bk . Sincea1; : : : ; at are contained inf b1; : : : ; bkg, p is a nonnegative integer
combination of b1; : : : ; bk .

For the second part, assume that the coneC is pointed. We claim that

bB := f x 2 B n f 0g : x is not the sum of two other vectors inBg (4.9)

is a unique minimal Hilbert basis. It is easy to see that every vector inbB must be in any
integral Hilbert basis. Now, we need to show that every vectorb in B not in bB can be
represented as nonnegative integer combination of vectors inbB. Suppose there is a vectorb
in B violating this property, and take such a vectorbminimizing cT b, wherec is a vector such
that cT x > 0 for all nonzerox 2 C. The existence ofc is guaranteed becauseC is pointed,
due to Corollary 3.13. Becauseb is not in bB, b = bi + bj for some nonzero vectorsbi , bj in
B . Now, we havecT b = cT bi + cT bj , and all terms are positive. This meanscT bi < cT b and
cT bj < cT b. By the assumption that cT b is minimized under the condition thatb is not in bB,
both bi and bj must belong to bB, contradicting b is not a nonnegative integer combination
of vectors in bB.

Exercise 4.1 Show that if a rational cone is not pointed, a minimal integral Hilbert basis
is not unique.

Exercise 4.2 In the proof above, assume thatt = d and the rational cone is generated by
d linearly independent vectorsC = cone(f a1; a2; : : : ; adg). Derive a tight lower bound ofk
in terms of d and the absolute value of the determinant det([a1; a2; : : : ; ad]). Note that k
is the number of lattice points in the zonotopeZ and k � 2d, because the zonotopeZ is
combinatorially a cube.

4.2 The Structure of Integer Hull

For a rational polyhedron P in Rd, recall that its integer hull PI is de�ned as the convex
hull of all integer points in P:

PI := convf x : x 2 P \ Zdg: (4.10)

It is not clear from the de�nition that the integer hull is a polyhedron, and in particular
�nitely generated. We will show that this is the case and the proof uses an argument similar
to those used to prove the existence of a Hilbert basis.

There are some obvious facts on the integer hull. First of all the integer hull of every
rational coneC is C itself:

CI := C: (4.11)
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Theorem 4.2 The integer hull PI of a rational polyhedron P is a polyhedron itself, and if
it is nonempty, then PI = B + C, where B is an integer polytope and C = rec: cone(P).
Proof. Assume that P is a rational polytope with a decompositionP = Q + C into a
polytope Q and the recession coneC. Assume that PI is nonempty. Let a1; a2; : : : ; at be
integral vectors in Rd with C = cone(f a1; a2; : : : ; atg). Let Z be the zonotope de�ned by

Z := f x 2 Rd : x =
tX

i =1

� i ai ; 0 � � i � 1; i = 1; : : : ; tg: (4.12)

! "

! #
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Figure 4.2: The Critical RegionQ + Z.

For the proof of the theorem, it su�ces to show that

PI = ( Q + Z)I + C: (4.13)

To see (Q + Z)I + C � PI , observe

(Q + Z)I + C � PI + C = PI + CI � (P + C)I = PI :

For the reverse inclusion, take any integer pointp 2 PI and we show thatp 2 (Q + Z)I + C.
This is su�cient because (Q + Z)I + C is convex. Nowp = q + c, for someq 2 Q and
c 2 C. Now, we havec =

P
i � i ai =

P
i b� i cai +

P
i (� i � b � i c)ai , where the �rst term

is denoted byc0 and the second byz. Clearly, c0 2 C \ Zd and z 2 Z . It follows that
p = q+ c0+ z = ( q+ z) + c0 which implies that q+ z is integer and thusq + z 2 (Q + Z)I .
Sincec0 2 C, we havep 2 (Q + Z)I + C.

Theorem 4.3 The integer hull PI of a rational polyhedron P = f x : Ax � bg given by an in-
teger matrix A and an integer vector bhas a generator representation PI = conv(f z1; : : : ; zkg)+
cone(f r1; : : : ; rhg) such that the size of each generator zi or r j is polynomially bounded by
the largest size of rows of the matrix [A; b].



IP (Fukuda) v.2015-02-14 30

Proof. Let P = f x : Ax � bg be a rational polyhedron and let� denote the largest size
of rows of [A; b].

By Theorem 3.17, a rational polyhedronP has a generator representationQ + C with
Q = conv(f v1; : : : ; vsg) and C = cone(f r1; : : : ; rhg), where each ofvi 's and r j 's has size
polynomially bounded by � . We may also assume that allr j 's are integer vectors. By
Theorem 4.2, rec: cone(PI ) = f r1; : : : ; rhg. We shall show that

PI = conv(f z1; : : : ; zkg) + C; (4.14)

wherez1; : : : ; zk are the integer points in the setQ + Y and

Y = f y :y =
hX

j =1

� j r j ; 0 � � j � 1; j = 1; : : : ; h; (4.15)

at most d of � j 's are positiveg: (4.16)

Each vectorzi has size polynomially bounded by� , because allr j 's are integer, polynomially
bounded by� in size, at mostd of them are used to representzi , and every integer point in
Q has size polynomially bounded by� .

We are left to show the equation (4.14). For this, it is su�cient to show that each minimal
nonempty faceF of PI contains at least one point fromf z1; : : : ; zkg, see Remark 3.18. Let
z be an integer point ofF . Becausez 2 P

z = q+
hX

j =1

� j r j ; (4.17)

for some� j � 0. By Carath�eodory's Theorem (Theorem 3.6), one may assume that at most
d of � j 's are positive. Letz0 be the vector

z0 := q+
hX

j =1

(� j � b � j c)r j : (4.18)

It follows that z0 is an integer vector and thus it is one of the vectors fromf z1; : : : ; zkg. It
is easy to see thatz0 2 F . This completes the proof.

Corollary 4.4 IP (4.2) is in NP (and thus in NPC).

4.3 Complexity of Mixed Integer Programming

One natural question is as to whether the mixed integer programming (MIP) is in NP, and
thus in NPC. An MIP is to

decide whether there exists (x; y)
such that A x + B y � c

x 2 Zd; y 2 Rn ;
(4.19)

whereA 2 Qm� d, B 2 Qm� n and c 2 Qm are given.
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Theorem 4.5 MIP (4.19) is in NP (and thus in NPC).
Proof. For the proof, it is su�cient to show that if the MIP admits a feasible solution
(x; y) then there is a feasible solution (x; y) such that x has size polynomially bounded by the
input size. To see this, we assume that the MIP has a feasible solution, and we look at the
projection Q of the nonempty polyhedronP = f (x; y) : A x + B y � cg to the x-space. Note
that QI is nonempty. By Corollary 3.19,Q admits an H-representationf x 2 Rd : Dx � f g
such that the size of each [D i ; f i ] is polynomially bounded by the largest size of rows of the
matrix [A; B; c]. By Theorem 3.17, it follows that Q has a V-representation in which the
size of each generator in the representation is polynomially boundedby the largest size of
rows of the matrix [A; B; c]. Now, by Theorem 4.3 applied toQ, we have that QI has a
V-representation in which the size of each generator is polynomially bounded by the largest
size of rows of the matrix [A; B; c]. This completes the proof.

Notes 4.6 The author was not aware of a written proof of Theorem 4.5. The proof above is
due to François Margot (Carnegie Mellon University) and the author in October 2010. We
learned in October 2010 that an independent proof was being written by Michele Conforti
(University of Padova) and Gérard Cornuéjols (Carnegie Mellon).

4.4 Further Results on Lattice Points in Polyhedra

Here, we mention some important results on lattice points in polyhedra without proofs. The
original proofs are not particularly di�cult but beyond the scope of this lecture notes.

The following is known as an integer analogue of Carath�eodory's theorem.

Theorem 4.7 (Cook, Fonlupt and Schrijver (1983)) Let C be a pointed rational cone
and let bB be the minimal integral Hilbert basis. Then, every integer point p in bB is an integer
nonnegative combination of at most 2d � 1 of the vectors in bB .

Later this bound 2d � 1 was improved to 2d � 2 by Seb}o (1990).

Another interesting result is on the distance between the integer programming solutions
and the solutions to the linear programming relaxation.

Theorem 4.8 (Cook, Gerards, Schrijver and Tardos (1986)) For a given matrix A 2
Zm� d, vectors b2 Zm and c 2 Zd, let (IP) be the integer programming problem maxcT x sub-
ject to Ax � b and x 2 Zd, and let (LP) be its LP relaxation (without the x 2 Zd contraints).
Let D denote the largest absolute value of subdeterminants of A. Assume that both problems
admit an optimal solution. Then the following statements hold.

(a) For any optimal solution x � of (LP), there exists an optimal solution z� of (IP) such
that jx �

i � z�
i j � dD for all i .

(b) For any optimal solution z� of (IP), there exists an optimal solution x � of (LP) such
that jx �

i � z�
i j � dD for all i .

By Theorem 2.1, the size ofD is at most twice the size of the matrixA. The theorem
above thus shows that there exists an optimal solution to (IP) in a hypercube of a width of
polynomial size centered at a given LP optimal solution, if both admit an optimal solution.
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5 Duality of Polyhedra

Duality in convex polyhedra is a very interesting notion not only in the theory of poly-
hedra but also in polyhedral computation. Duality implies that two basic representation
conversions between V-representation and H-representation of a polyhedron are essentially
the same thing. Yet, in order to convert one to the other is sometimes tricky because there
are certain assumptions under which any speci�c conversion can work.

5.1 Face Lattice

Let P be a convex polytope inRd. Each faceF of P is a convex polytope again by de�nition.
The dimension dim(P) of P is the maximum number of a�nely independent points in P
minus one. The number ofk-dimensional faces ofP is denoted byf k(P). By Theorem 3.14,
f k(P) is �nite. A k-dimensional face (polytope) is called simplyk-face (k-polytope). For a
d-polytope P, the vector

f (P) := ( f � 1; f 0; f 1; : : : ; f d) (5.1)

is called thef-vector of P. Clearly f � 1 = f d = 1.
The 0-faces of ad-polytope are called thevertices, the 1-faces theedges, the (d� 1)-faces

the facets, and the (d � 2)-faces theridges.
We denote byF (P) the �nite set of all faces ofP ordered by set inclusion. This is called

the face lattice of P. Recall that a lattice is a partially ordered set (poset in short) where the
join (the least upper bound) and the meet (the greatest lower bound) of any two elements
a and b exist in the set. The face lattice of a polytope is also known as thecombinatorial
structure of the polytope. In Figure 5.1, the face lattices of 1-, 2- and 3-cubes are depicted,
whose f-vectors aref 1; 2; 1g, f 1; 4; ; 4; 1g and f 1; 8; 12; 6; 1g. One can easily show that all
1-polytopes are �nite line segments and thus are combinatorially thesamediamond.

Figure 5.1: The Hasse diagram of the face lattices of 1-, 2- and 3-cubes

A lattice is called polytopal if it is isomorphic to the lattice of a polytope. Polytopal
lattices are very special. The following proposition summarizes this.

Proposition 5.1 Every polytopal lattice satisfies the follow properties.

(a) It satisfies the Jordan-Dedekind chain property, i.e., all maximal chains between any
two ordered elements a < b have the same length.
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(a) For any two ordered elements a < b, the interval [a; b], the set of elements between a and
b, is again a polytopal lattice. In particular, this means that every interval of height 2
is a diamond.

We shall prove these properties in a later section, as we do not use them to prove the
polytopal duality to be described below.

For a polytopeP, a polytopeP0 is called adual of P if F (P0) is anti-isomorphic toF (P),
where two lattices are called anti-isomorphic if one is isomorphic to theupside-down (order
reversed) lattice of the other. It follows that a polytopeP and a dual polytopeP0 have the
same dimension, and their f-vectors are reversed,f i (P) = f d� i � 1(P0) for all i = � 1; 0; : : : ; d.
The following is the fundamental theorem of duality.

Theorem 5.2 Every polytope admits a dual polytope.

It is easy to see that a dual polytope is not unique. Anyd-simplex is a dual of ad-simplex.
A 3-cube is a dual of an octahedron but there are many geometrically di�erent polytopes
with isomorphic face lattices.

Yet, there is a simple construction of a dual polytope which is extremely useful, both
theoretically and computationally. For a convex bodyC in Rd containing the origin 0 in its
interior, de�ne its polar denoted byC � as

C � = f y 2 Rd : xT y � 1; 8x 2 Cg: (5.2)

Theorem 5.3 Let P be a polytope containing the origin 0 in its interior. Then its polar P �

is a dual polytope of P .

5.2 Active Sets and Face Representations

As we learned from Theorem 3.9, every polyhedron has two representations, H-reprentation
and V-representation. These two representations are closely linked to duality. Intuitively,
by setting the transpose of an H-representation as a V-reprentation, we obtain a dual. This
statement is in general incorrect and can be stated correctly withproper assumptions.

Let P be a polyhedron with an H-representation (A; b) and a V-representation (V; R).
Each row of (A; b) is denoted by (A i ; bi ), representing the inequalityA i x � bi . Each column
of V and R is denoted by vj and r k , respectively, the j th vertex generator and thekth
ray generator. We employ a little abuse of language here. An H-representation (A; b) is
considered as the set of all its rows (A i ; bi ), and similarly V (R) is considered as the set of
all its columns vj 's (r k 's).

Let F be a non-empty face ofP. An inequality (A i ; bi ) is called active at F if the
inequality is satis�ed with equality at all points in F . The set of all active inequalities is
called theactive inequality set at F .

Similarly, a vertex generatorvj is calledactive at F if vj 2 F . A ray generatorr k is called
active at F if moving from any point onF along the directionr k won't leave the polyhedron,
i.e., x + �r k 2 F for any x 2 F and � � 0. The pair (V 0; R0) of sets of all active vertices and
active rays are called theactive generator sets atF . We extend the set inclusion for pairs of
sets in the natural way, we de�ne (V 00; R00) � (V 0; R0) if and only if V 00� V 0 and R00� R0.

Active inequalities and generators are very important for representation of faces and face
lattices.
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Theorem 5.4 Let P be a polyhedron with a V-representation (V; R), and let F be a nonempty
face of P . Then the active generator set pair (V 0; R0) at F is a V-representation of F .
Proof. Let (J; K ) be the column index sets of (V 0; R0), namely, V 0 = ( vj : j 2 J ) and
R0 = ( r k : k 2 K ). Let

F = f x 2 Rd : x = V 0� 0+ R0� 0; � 0 � 0; 1T � 0 = 1; � 0 � 0g:

We need to showF = F . By de�nition of active generators, we haveF � F . For the
converse inclusion, letp 2 F and supposep 62F . Sincep 2 P,

p = V � + R� (5.3)

for some� � 0, 1T � = 1 and some� � 0. Becausep 62F , we have� j > 0 for j 62J or
� k > 0 for k 62K . Suppose there isj 62J such that � j > 0. Then, vj 62F . Let (A; b)
be an H-representation ofP. Sincevj 62F , there is an inequality (A i ; bi ) active at F such
that A i vj < bi . Since this is active at F,A i p = bi and this implies that there is a ray or
vertex generator in the RHS representation 5.3 ofp which violates this active inequality.
This is impossible. The second case is impossible by a similar argument. Thus, p 2 F . This
completes the proof.

Theorem 5.5 Let P be a polyhedron with an H-reprentation (A; b) and a V-representation
(V; R). Then

(a) the face poset F (P)nf;g is anti-isomorphic to the set of all active inequality sets ordered
by set inclusion;

(b) the face poset F (P) n f;g is isomorphic to the set of all active generator sets ordered by
set inclusion.

Proof.

(a) It is clear that the larger a face is, the smaller its active inequality setis. The main
question is if the strictly larger a face is, the strictly smaller its activeinequality set
is. This follows directly from Theorem 3.14.

(b) Using a similar argument to (a), (b) follows from Theorem 5.4.

5.3 Duality of Cones

Before proving the duality of polytopes, we show the duality of cones is a straightforward
consequence of Theorem 5.5, a basic theorem on face lattice representations by active sets.

The notion of dual (polyhedral) cone is essentially the same as that of polytopes, the
face lattice of a dual is the polar (upside-down) lattice. There is a small technical di�er-
ence. Cones are di�erent from polytopes in the sense that every cone has a unique minimal
nonempty face (containing the origin), which plays exactly like the empty face of every poly-
tope. For this reason, we de�ne theface lattice F (C) of a cone C as the set of allnonempty
faces of C ordered by set inclusion. Accordingly, we say that a coneC0 is a dual cone of a
coneC if F (C) and F (C0) are anti-isomorphic.
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Theorem 5.6 Every (polyhedral) cone admits a dual cone.

Our proof is by construction. For this, we de�ne two cones. For a real m � d matrix A,
we denote byCH (A) the cone with A as its H-representation:

CH (A) = f x : Ax � 0g: (5.4)

For a real d � s matrix R, we denote byCV (R) the cone with R as its V-representation:

CV (R) = f x : x = R�; � � 0g: (5.5)

Using this notation, Minkowski-Weyl Theorem, Theorem 3.10, says that a set C is of form
C = CH (A) for some matrix A if and only if C = CV (A) for some matrix R.

The following is a stronger (constructive) version of the cone duality, Theorem 5.6.

Theorem 5.7 For any real m � d matrix A, the cone CH (A) and the cone CV (AT ) are dual
to each other.

"

$

%& '!(

! $

#"

%) '! * (

Figure 5.2: Cone Duality

Proof. Let A be a realm � d matrix. Let F be any nonempty face ofCH (A), and let
I � [m] be the set of active inequality row indices atF , i.e., F = f x 2 CH (A) : A I x = 0g
and

9c 2 Rd such that A i c = 0; 8i 2 I; and

A j c < 0; 8j 2 [m] n I:

Or equivalently,

9c 2 Rd such that cT (A i )T = 0; 8i 2 I; and

cT (A j )T < 0; 8j 2 [m] n I:

Noting that the vectors (A i )T (i 2 [m]) are the generators of the coneCV (AT ), the relations
above show exactly thatf (A i )T :2 I g is the active generator set at the face ofCV (AT )
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determined by the valid inequality cT x � 0 for the coneCV (AT ). The reverse direction is
obvious.

This provides a one-to-one correspondence between the set of nonempty faces ofCH (A)
and the set of nonempty faces ofCV (AT ), reversing the set inclusion. This completes the
proof.

5.4 Duality of Polytopes

As we learned in the previous section, the duality of cones arises very naturally, and in fact,
an H-representation of a cone immediately gives a V-representation of a dual cone, and vice
visa: the conesCH (A) and CV (AT ) are dual to each other for any matrixA.

To derive a similar construction for polytopes, one can use the coneduality carefully.
The main idea is to express ad-polytope P as the intersection of (d + 1)-cone C in such a
way that P is embedded inC as the intersection ofC with hyperplane xd+1 = � 1. This is
easy to do ifP is a V-polytope. This gives some matrixR and the coneCV (R) in Rd+1 .
We know how to construct a dual ofCV (R): CH (RT ). The hard part is the rest: we have
to make sure that it is \nicely" intersected by a hyperplane so that the intersection is a
polytope and has the same face lattice asCH (RT ). If this is done, we have the construction
of a dual ofP.

Let P be ad-polytope with V-representationV = [ v1; : : : ; vm ]. Let

V̂ :=
�

v1 v2 � � � vm

� 1 � 1 � � � � 1

�
: (5.6)

By Theorem 5.7, the following conesC and D de�ned below are dual to each other

C := CV (V̂ ) = f x : x = V̂ �; � � 0g; (5.7)

D := CH (V̂ T ) = f x : V̂ T x � 0g: (5.8)

Furthermore, by construction, the coneC representsP nicely.

Proposition 5.8 The face lattices F (P) and F (C) are isomorphic.
Proof. Consider the cut sectionP0 of C with the hyperplane h� 1 := f x 2 Rd+1 : xd+1 =
� 1g. It follows that P and P0 are a�nely equivalent, and in particular, their face lattices
are isomorphic. It is left to show thatF (C) and F (P0) are isomorphic. This follows from
the fact that V̂ is not only a V-representation ofC but also a V-representation ofP0.

A proof of Theorem 5.2 is almost complete, because we know the facelattice of D
is the target lattice we need to realize as the face lattice of a polytope. The only thing
we have to show is that the coneD can be cut nicely by a hyperplane so that the cut
section, sayQ0, has the face lattice isomorphic toD. For this, consider the hyperplane
h+1 := f x 2 Rd+1 : xd+1 = +1 g. de�ne

Q0 := D \ h+1 : (5.9)
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Observe that

Q0 =

8
><

>:

�
x

xd+1

�
2 Rd+1 :

2

6
4

vT
1 � 1
...

...
vT

m � 1

3

7
5

�
x

xd+1

�
� 0

9
>=

>;
\ f x 2 Rd+1 : xd+1 = +1 g (5.10)

=
��

x
1

�
2 Rd+1 : vT

i x � 1; 8i = 1; : : : ; m
�

: (5.11)

Thus, the polyhedronQ0 is a�nely equivalent to the polyhedron

Q = f x 2 Rd : vT
i x � 1; 8i = 1; : : : ; mg = f x 2 Rd : V T x � 1g: (5.12)

The polyhedron Q (and Q0) may not have the face lattice isomorphic toD in general.
Construct a small example to show this fact. The following lemma givesa right assumption
for duality to work.

Theorem 5.9 If P contains the origin in its interior, the polyhedron Q is a polytope dual
to P .
Proof. Assume that P contains the origin in its interior. The only thing left to be
shown is that the face lattices of the coneD and the polyhedronQ0 are isomorphic. For
this, it is su�cient to show that Q0 is bounded and a V-representation ofQ0 is in fact a
V-representation ofD. (Figure 5.3 shows that the assumption is in fact necessary.)
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Figure 5.3: Polytope Duality: When it works and When it does not
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Observe that the assumption is equivalent to

rank V = d; and (5.13)

9� > 0 such that V � = 0: (5.14)

By (a variation of) the Alternative Theorem (Exercise??), the statement (5.14) is equivalent
to

∄x such that V T x � 0: (5.14')

In order to show that Q (and Q0) is bounded, suppose the contrary: there is a unbounded
direction in Q, i.e., a nonzero vectorz such that V T z � 0. By (5.14'), this implies V T z = 0
and z 6= 0, which is impossible by the assumtion (5.14).

Now, we shall show a V-representation ofQ0 is a V-representation ofD. For this, we take
any nonzero vector (x; xd+1 )T 2 D, and show thatxd+1 > 0. This means that the normalized
vector (x=xd+1 ; 1)T is in Q0. Thus, any V-representation ofQ0 represents the coneD. To see
that xd+1 > 0, observe that

�
x

xd+1

�
6= 0 and V̂ T

�
x

xd+1

�
� 0

=)
�

x
xd+1

�
6= 0 and V T x � 1xd+1 � 0

=) xd+1 > 0:

The last implication is valid because ifxd+1 � 0, V T x � 0 for x 6= 0 which is impossible by
the assumptions (5.13) and (5.14).

5.5 Examples of Dual Pairs

In Section 3.7, we introduced a few examples of polytopes. Let's lookat their duals.
First of all, one can easily see that ad-simplex is self-dual.
What is a dual of an d-cube? The simple way to see is to use the centrally symmetric

cube Cube(d) whose vertex set isf� 1; 1gd. Namely,

Cube(d) = conv f� 1; 1gd = f x 2 Rd : � (ei )T x � 1; 8i = 1; : : : ; dg: (5.15)

The polar of Cube(d) is known as thed-cross polytope:

Cross(d) = f x : aT x � 1; 8a 2 f� 1; 1gdg = convf� ei : i = 1; : : : ; dg: (5.16)

Among all �ve regular polytopes in 3 dimension, the remaining duality is between a
dodecahedron and an icosahedron.

An icosa-dodecahedron is a truncated dodecahedron, obtained from a dodecahedron trun-
cated at each vertex to the midpoint of incident edges. The numberof facets is clearly
32 = 12 + 20, the sum of the numbers of facets of an icosahedron and a dodecahedron.
Its dual is known as arhombic triacontahedron, which is a very special zonotope arising as
quasicrystal.
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Type Figure # Vertices # Facets # i -Faces

Cube(d) 2d 2d
� d

i

�
2d� i

Cross(d) 2d 2d
� d

i +1

�
2i +1

Dodecahedron 20 12

Icosahedron 12 20

Rhombic Triacontahedron 32 30

Icosa-Dodecahedron 30 32
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5.6 Simple and Simplicial Polyhedra

Both a 3-cube and a dodecahedron aresimple polytopes and their duals aresimplicial poly-
topes.

More generally, thesimple d-polytopes are such that each vertex is contained in exactly
d facets, while thesimplicial d-polytopes are such that each facet contains exactlyd vertices.

Proposition 5.10 For a d-polytope P , the following statements are equivalent:

(a) P is simple.

(b) Each vertex v of P is incident to exactly d-edges.

(c) For each vertex v of P , and for any k distinct edges incident to v, there exists a unique
k-face containing the k edges.

(d) For each vertex v of P , and for any 2 distinct edges incident to v, there exists a unique
2-face containing the 2 edges.

Proposition 5.11 For a d-polytope P , the following statements are equivalent:

(a) P is simplicial.

(b) Each facet f of P contains exactly d-ridges.

(c) For each facet f of P , the intersection of any k distinct ridges contained in f is a
(d � k � 1)-face.

(d) For each vertex v of P , the intersection of any 2 distinct ridges contained in f is a
(d � 3)-face.

5.7 Graphs and Dual Graphs

Proposition 5.1 shows that every interval of hight 2 is a diamond. Thismeans one can de�ne
two types of graphs of a polytope. Thegraph of a polytopeP is G(P) = ( V(P); E(P)), where
V(P) is the set of vertices ofP and E(P) is the set of all edges each of which is represented as
the pair of its two vertices. Thedual graph of a polytopeP is GD (P) = ( F (P); R(P)), where
F (P) is the set of facets ofP and R(P) is the set of all ridges each of which is represented
as the pair of the two facets containing it. By the de�nition of duality, if Q is a dual of a
polytope P, G(P) is isomorphic toGD (Q).
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6 Line Shellings and Euler's Relation

6.1 Line Shelling

Let P = f x 2 Rd : A i x � 1; i = 1; 2; : : : ; mg be a polytope.P has such a representation i�
it contains the origin in its interior.

A shelling of the boundary of P is a sequenceF1, F2, : : :, Fm of its facets such that
([ k� 1

i =1 Fi ) \ Fk is a topological (d � 2)-ball for each 2� k � m � 1.

F1 F2

F3

F4

F5

F6

F7

F12
F11

F10

F9

F8

Figure 6.1: A Shelling of a Dodecahedron

The following is a fundamental theorem on polytopes which is extremely useful both
theoretically and computationally.

Theorem 6.1 (Bruggesser-Mani [11] (1971)) The boundary of every polytope admits a
shelling.
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This theorem was used without proof by a Swiss mathematician LudwigSchl•a
i (1901)
to compute the Euler characteristic (to be discussed later) of convex polytopes. Seventy
years later, an elegant proof was given. Here is the main idea. Bruggesser-Mani [11] proved
a stronger theorem where any line in general position through an interior point of a polytope
induces a particular shelling, known as a line shelling. Figure 6.2 illustrates this.

z1

z3

z2

z4

z5

z12

z4

L

F4

(a)

(b)

Figure 6.2: A Line Shelling

Imagine that a given polytopeP is a planet earth and you are traveling along a generic
oriented line L starting from some interior point. The �rst point z1 to meet the boundary
of P is a point on a facet. Let's call this facetF1. Then you meet another pointz2 on the
boundary of a halfspace spanned by a facet. Let's call this facetF2. If you move a little
forward from z2, you "see" only two facetsF1 and F2. This travel induces an ordering of
facets as they become visible to you one by one. These facets are not all, and in the �gure
above, we have a sequence fromF1 up to F6. The rests are to be ordered in a similar manner
but from the opposite side of in�nity on L. More precisely, you travel from the other side of
in�nity and follow the line along the orientation. From a point far from P, you see all facets
not yet ordered. Now moving towardP, some facet becomes invisible. Let's call this facet
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F7. Then another facet becomes invisible that isF8. When we reach the last facetF12, all
facets ofP are ordered. Such an ordering of facets can be shown to be a shelling of P.

For any point z in Rd n P, the union of all facets visible fromz forms a very special
subset of the boundary. Let's all it thevisible hemisphere from z. Similarly, we de�ne the
invisible hemisphere from z. The proof uses the fact that both the visible and the invisible
hemispheres are shellable.

Before giving a formal proof of Theorem 6.1, let us interpret the lineshelling in a dual
polytope.

Consider a polytopeP in Rd which contains the origin0 in its interior. Thus, its H-
representation can be of form

P = f x 2 Rd : Ax � 1g:

for somem � d matrix A. The polar dual of P is

P � = convf AT
i : i = 1; : : : ; mg;

whereA i is the i th row of A.
For a genericc 2 Rd, sort the verticesAT

i 's of the dual polytope by the linear function
cT x. Namely, we suppose

A1 c > A 2 c > � � � > A m c:

What is the meaning of this sorting for the original polytopeP?
Geometrically, the parameterized lineL(� ) = f � c j � 2 Rg meets each hyperplane

determined by A i x = 1 at a point, say zi . Let � i denotes the parameter value at the
intersection. Thus,

zi = � i c and A i zi = 1:

Consequently:

1=� 1 > 1=� 2 > � � � > 1=� k > 0 > 1=� k+1 > � � � > 1=� m :

F1

F3

F4

F2

0

c

F5

x

z1

z2

x
z3

z4

z5

P
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This ordering is exactly the ordering produced by the space travel.(For any positive
1=� i , the smaller its value, the farther away the pointzi is from the origin. What about for
negative case?)

6.2 Cell Complexes and Visible Hemispheres

A cell complex or simply a complex K in Rd is a �nite set of polytopes inRd such that

(a) If P 2 K and F is a face ofP, then F 2 K .

(b) If P 2 K and Q 2 K , then P \ Q is a common face ofP and Q.

The dimension dim K of a complexK is the largest dimension of its members. A complex
of dimension d is called a d-complex. The body jK j of a complexK is the union of all
members ofK . The boundary complex @Kof a complexK is de�ned as the subcomplex of
K consisting of all elements inK contained in the boundary of its body.

The complex K (P) of a polytope P is the set of all faces ofP. The boundary complex
@K(P) is simply the set of all proper faces ofP. Both the complex and the boundary
complex of a polytope arepure, i.e., the maximal members have the same dimension.

A pure complex K is called B-shellable if the maximal members can be arranged in a
sequenceF1, F2, : : :, Fm in such a way that the subcomplex induced by ([ k� 1

i =1 Fi ) \ Fk is
B-shellable for each 2� k � m. By de�nition, the complex of a 0-polytope is B-shellable,
and those are the only B-shellable 0-complexes.

A pure complexK is calledS-shellable if it has at least two maximal members and the
maximal members can be arranged in a sequenceF1, F2, : : :, Fm in such a way that the
subcomplex induced by ([ k� 1

i =1 Fi ) \ Fk is B-shellable for each 2� k � m � 1, and it is
S-shellable fork = m. By de�nition, the boundary complex of a 1-polytope is S-shellable,
and those are the only S-shellable 0-complexes.

These notions B-shellability and S-shllability are motivated by topological notions of
balls and spheres. However, it should be observed that a B-shellable(S-shellable) complex is
not necessarily a ball (a sphere). For example, the complex consisting of three 1-polytopes
having a single vertex in common is B-shellable but not homeomorphic toa ball. We can
add extra conditions to B-shellability (S-shellability) to enforce the resulting complexes to
be topologically a ball (a sphere). The following is a combinatorial analogue of Theorem 6.1.

Theorem 6.2 The boundary complex @K(P) of a polytope is S-shellable.

Before presenting a proof, we will give a nice application of this theorem. We de�ne the
Euler characteristic of a complexK as

� (K ) =
dim KX

i =0

(� 1)i f i (K ); (6.1)

where f i (K ) is the number of i -dimensional members ofK . It is easy to see that, for any
two subcomplexesA and B of a complex, we have

� (A [ B) + � (A \ B) = � (A) + � (B): (6.2)



IP (Fukuda) v.2015-02-14 45

Theorem 6.3 (Euler's Relation) The following statements hold.

(a) If K is B-shellable, � (K ) = 1 .

(b) If K is S-shellable, � (K ) = 1 + ( � 1)dim K .

Proof. Both statements are obvious if dimK = 0. By induction, we assume that both
statements are true if dimK < d (� 1). First consider a B-shellabled-complex K . Since
K is B-shellable, itsd-polytopes can be orderedF1, F2, : : :, Fm in such a way that the
subcomplex induced by ([ k� 1

i =1 Fi ) \ Fk is B-shellable for each 2� k � m. When m = 1,
clearly we have� (K ) = � (@K) + ( � 1)d. Since@Kis S-shellable by Theorem 6.2 and has
dimensiond � 1, the induction hypothesis implies

� (K ) = � (@K) + 1 = 1 + ( � 1)d� 1 + ( � 1)d = 1:

Now we use the second induction onm. We assume that (a) is valid if f d(K ) < m , and
then consider the casef d(K ) = m. Since the subcomplexA induced by ([ m� 1

i =1 Fi ) is B-
shellable by the second induction, it satis�es (a). We denote byB the subcomplex induced
by Fm . By using the fact that the subcomplexC induced by ([ m� 1

i =1 Fi ) \ Fm is a B-shellable
(d � 1)-complex, by the �rst induction and (6.2), we have

� (K ) = � (A) + � (B) � � (C) = 1 + 1 � 1 = 1:

The remaining proof of (b) is straightforward as we already established (a). Let K be
a S-shellabled-complex. Then, its d-polytopes can be orderedF1, F2, : : : Fm such that
the subcomplex induced by ([ k� 1

i =1 Fi ) \ Fk is B-shellable (S-shellable, respectively) for each
2 � k � m � 1 (k = m). Note that the subcomplexA induced by ([ m� 1

i =1 Fi ) is B-shellable
and satis�es (a). The subcomplex induced byFm is also B-shellable and satis�es (a). The
subcomplexC induced by ([ m� 1

i =1 Fi ) \ Fm is a S-shellable (d � 1)-complex, by the �rst
induction and (6.2), we have

� (K ) = � (A) + � (B) � � (C) = 1 + 1 � (1 � (� 1)d� 1) = 1 + ( � 1)d:

This completes the proof.

Of special interest are topological properties of visible and invisible hemispheres of a
polytope P. Please recall that for any pointz in general position inRd n P, the union of
all facets ofP is the visible hemisphere from z, denoted by vi(P; z). Similarly, we de�ne the
invisible hemisphere from z, denoted by iv(P; z).

Theorem 6.4 Let P be a d-polytope in Rd for d � 1 and let z be any point in general
position in Rd n P . Then the two subcomplexes of K (P) induced by the visible hemisphere
vi(P; z) and the invisible hemisphere iv(P; z) from z are B-shellable.
Proof. We use induction ond. By inductive hypothesis, we assume that (*) the visible
hemisphere vi(P; z) and invisible hemisphere iv(P; z) from z induce B-shellable subcomplexes
when d < k , with k � 2. The statement (*) is obvious ford = 1.
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Now we try to show that (*) is true for d = k. We take an oriented lineL through z
in general position which intersects the interior ofP, and let z1, z2, . . . , zm be the distinct
intersections ofL and the hyperplanes spanned by the facetsF1, : : :, Fm . Without loss of
generality, the ordering is the one obtained by the space travel onL.

We �rst show that the visible hemisphere vi(P; z) induces a B-shellable subcomplex. The
point z is betweenzi and zi +1 for some 1� i < m . If i = 1, vi( P; z) = F1 and thus
obviously vi(P; z) induces a B-shellable subcomplex. We use induction again, oni , and
assume by induction hypothesis that vi(P; z) induces a B-shellable subcomplex fori < h
for someh � 2. We consider the casei = h. Note that vi( P; z) = vi( P; zi ) [ Fi , where
vi(P; zi ) induces a B-shellable subcomplex by the inductive hypothesis. Now,we claim that
vi(P; zi ) \ Fi induces a B-shellable (d � 2)-subcomplex. This is true because this set is in
fact the visible hemisphere vi(Fi ; zi ) from zi in the (d � 1)-dimensional space spanned by
Fi . SinceFi is a (d � 1)-ball and vi(P; zi ) \ Fi induces a B-shellable subcomplex, vi(P; z)
induces a B-shellable subcomplex. Essentially the same argument shows that the invisible
hemisphere iv(P; z) induces a B-shellable subcomplex.

This completes the double induction proof.

Proof. (of Theorem 6.2) By de�nition, the boundary complex of any 1-polytope is S-
shellable. We assume by induction that@K(P) of any polytope of dimensionk � 1 or less
is shellable. Consider anyk-polytope P. Let F be a facet ofP, and let z be a point from
which F is the only visible facet ofP. This means that iv(P; z) is a subcomplex of@K(P)
induced by all facets ofP exceptF . By Theorem 6.4, iv(P; z) is B-shellable. We claim that
any shelling ordering of iv(P; z) with F appended at the end is a shelling of iv(P; z). For
this, we only need to show that@K(F ) is S-shellable. SinceF has dimensionk � 1, this
follows from the inductive hypothesis. This completes the proof.

6.3 Many Di�erent Line Shellings

The proof of shellability of polytope boundaries using the notion of lineshelling provides
many di�erent ways to shell a polytope boundary. The choice of a lineis restricted only
by the two conditions (1) it has to intersects with the interior of thepolytope, (2) it must
intersects the hyperplanes spanned by the facets at distinct points.

Proposition 6.5 The boundary of every polytope admits a shelling F1, F2, : : :, Fm with any
one of the following prescribed conditions:

(a) both F1 and Fm can be prefixed arbitrarily.

(b) all facets incident to a given vertex can be ordered earlier than any other facets.

(c) all facets incident to a given vertex can be ordered later than any other facets.
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7 McMullen's Upper Bound Theorem

7.1 Cyclic Polytops and the Upper Bound Theorem

The moment curve in Rd is the image of the real spaceR by the function m(t) de�ned by

m(t) := ( t; t 2; t3; : : : ; td)T : (7.1)

The function m(�) is thus a parametric representation of the moment curve.
A cyclic polytope is the convex hull ofn (> d ) distinct points on the moment curve,

that is, convf m(t1); m(t2); : : : ; m(tn )g for somet1 < t 2 < � � � < t n . The following is a basic
property of the moment curve.

Proposition 7.1 Any (d + 1) distinct points on the moment curve m(t) are affinely inde-
pendent.
Proof. Supposem(t1); m(t2); : : : ; m(td+1 ) are a�nely dependent for somet1 < t 2 < � � � <
td+1 . Then they must lie in some hyperplane, and thus there is a linear equation

a0 + a1x1 + a2x2 � � � + adxd = 0

satis�ed by all m(t i )'s. It follows that the polynomial equation

a0 + a1t1 + a2t2 � � � + adtd = 0

is satis�ed by (d + 1) distinct values of t, which contradicts to the fundamental theorem of
algebra.

Proposition 7.1 implies that the cyclic polytope c(d; n) is a simplicial polytope and its
dual is a simple polytope.

We will see that for any �xed d and n, its combinatorial structure is unique. Thus, we
will denote anyone of them by c(d; n), and their duals by c� (d; n).

McMullen's upper bound theorem is one of the most important theorems in the theory
of convex polytopes.

Theorem 7.2 (McMullen's Upper Bound Theorem [38] (1970)) For any fixed d and
n, the maximum number of j -faces of a d-polytope with n vertices is attained by the cyclic
polytope c(d; n) for all j = 0; 1; : : : ; d� 1. Equivalently, for any fixed d and n, the maximum
number of j -faces of a d-polytope with n facets is attained by the dual cyclic polytope c� (d; n)
for all j = 0; 1; : : : ; d � 1.

There is an explicit formula for f j (c(d; n)) for j = 0; 1; : : : ; d � 1. The following gives
essentially a half of these formulas.

Lemma 7.3 For any d � 0 and n � d + 1 ,

(a) f j � 1(c(d; n)) =
� n

j

�
, for 0 � j �

�
d
2

�
.

(b) f k(c� (d; n)) =
� n

d� k

�
, for

�
d
2

�
� k � d.
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Proof. By duality, two statements (a) and (b) are equivalent. Let's prove(a).
Consider the cyclic polytopeP = convf m(t1); m(t2); : : : ; m(tn )g with t1 < t 2 < � � � < t n .

Let 0 � j �
�

d
2

�
. Take the �rst j points m(t1); m(t2); : : : ; m(t j ), and consider the hyperplane

h determined by

a0 + a1x1 + � � � + adxd = 0; (7.2)

where the coe�cients ai 's coincide with those in the polynomial

p(t) := a0 + a1t + � � � + adtd � � j
i =1 (t � t i )2: (7.3)

Note that the assumption j �
�

d
2

�
implies that the polynomial p(t) has degree at mostd.

Observe that h contains all the points m(t i ) for i = 1; : : : ; j . Furthermore, the remaining
points m(t i ) for i = j + 1; : : : ; n are strictly on the positive side of the hyperplane. This
means that convf m(t1); : : : ; m(t j )g is a face ofP. Since the above discussion works exactly
the same way if we take anyj points, everyj points from f m(t1); m(t2); : : : ; m(tn )g determine
a (j � 1)-face.

Lemma 7.3 implies an interesting property of the cyclic polytope. Namely, if d � 4, then
every pair of vertices forms an edge. This means that the graph ofc(d; n) is a complete
graph for d � 4. This is not very intuitive because this phenomenon does not occurin the
3-dimensional space.

The proof of Lemma 7.3 gives some ideas on how to determine the facets of c(d; n).
Which d-tuples of points from f m(t1); m(t2); : : : ; m(tn )g span a facet? Since anyd-tuple
f m(t j 1 ); m(t j 2 ); : : : ; m(t j d )g is a�nely independent and thus it spans a hyperplane. Whether
or not it de�nes a facet is thus equivalent to whether or not all the remaining points are on
one side of the hyperplane. This turns out to be quite easy to checkthrough a combinatorial
condition, known asGale’s evenness condition.

Exercise 7.1 Find a necessary and su�cient condition for a set ofd points m(t j 1 ), m(t j 2 ),
: : :, m(t j d )g to determine a facet of the cyclic polytope.

Lemma 7.3 gives essentially a half of thef -vector of the cyclic polytope. Yet, by using
the fact that it is simplicial, the remaining information on the f -vector will be shown to be
determined uniquely.

7.2 Simple Polytopes and h-vectors

To establish the Upper Bound Theorem, Theorem 7.2, we shall provethe dual statement:

For any �xed d and n, the maximum number ofj -faces of ad-polytope with n
facets is attained by the dual cyclic polytope c� (d; n) for all j = 0; 1; : : : ; d � 1.

We have two basic steps.The �rst step is to show that it is su�cient to consider only
simple polytopes as maximizers of the number ofj -faces, for a �xed number of facets. More
precisely, we have:
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Theorem 7.4 For any d-polytope P with n facets in Rd, there exists a simple d-polytope P0

with n facets such that f j (P) � f j (P0) for all j = 0; 1; : : : ; d � 1.
Proof. We only have to argue that a small perturbation of each inequality de�ning P
does not decrease the number ofj -faces. We leave the proof to the reader. Use Theorem 3.14
and analyze how a face changes as an inequality gets perturbed slightly toward enlarging
the polytope.

The second step is to show that among all simpled-polytopes with n facets, the dual
cyclic polytope c� (d; n) maximizes the number ofj -faces for allj = 0; 1; : : : ; d � 1.

For the rest of this section,

(*) we only consider simpled-polytopes with n facets.

We denote by� (d; n) the set of all simpled-polytopes inRd with n facets.
For any P 2 � (d; n), consider a linear programcT x subject to x 2 P. Assume that c

is generic so that no edge ofP is parallel to the hyperplane given bycT x = 0. Thus, each
edge ofP gets oriented toward the vertex of higher objective value, and the resulting LP
orientation

�!
G(P) of the graphG(P) is well-de�ned. In particular,

�!
G(P) is a directed graph

with the unique sink (maximizer) vertex and the unique source (minimizer) vertex.
Now, we denote byhk(

�!
G(P)) the number of vertices of indegreek, for eachk = 0; 1; : : : ; d.

Clearly, h0(
�!
G(P)) = hd(

�!
G(P)) = 1. We shall eventually write hk(P) instead of hk(

�!
G(P)),

as we will see below that this number does not depend onc at all.

Lemma 7.5 For any polytope P 2 � (d; n) and any generic c 2 Rd, the value hk(
�!
G(P))

depends only on P , and in particular, it does not depend on c. Thus, it can be denoted as
hk(P).
Proof. Let P be a polytopeP 2 � (d; n) and take a genericc 2 Rd. We denote by (F; v)
a pair of a k-faceF of P and a vertexv on F which is the unique sink onF . It is clear that
the number of such pairs (F; v) is the number ofk-faces,f k(P).

Now, �x a vertex v of P and �x k. The number of such pairs (F; v) can be counted by
using Proposition 5.10. Namely, there are exactly

� r
k

�
k-faces incident tov whose sink isv,

wherer is the indegree ofv in
�!
G(P). Now ranging v over all vertices, we have

dX

r =0

hr (
�!
G(P))

�
r
k

�
= f k(P), for k = 0; 1; : : : ; d: (7.4)

Now the system of linear equations can be written using a matrix and vectors as
2

6
6
6
6
6
6
6
6
4

� 0
0

� � 1
0

�
� � �

� d
0

�

0
� 1

1

� � 2
1

�
� � �

� d
1

�

0 0
. . . � � �

...
0 0 0

� k
k

�
� � �

� d
k

�

0 0 0 0
. . .

...
0 0 0 0 0� � �

� d
d

�

3

7
7
7
7
7
7
7
7
5

2

6
6
6
6
6
6
6
4

h0

h1
...

hk
...

hd

3

7
7
7
7
7
7
7
5

=

2

6
6
6
6
6
6
6
4

f 0

f 1
...

f k
...

f d

3

7
7
7
7
7
7
7
5

: (7.5)
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The matrix on the LHS is obviously nonsingular, because it is upper triangular and the
diagonal entries are all 1's. This means thathj 's are determined uniquely byf j 's, and thus
hj 's are independent ofc. This completes the proof.

There are di�erent ways to solve the equation (7.5) in terms of theh-vector h(P) :=
(h0; h1; : : : ; hd). The resulting formula for h in terms of f is given by

hi (P) =
dX

k=0

(� 1)k� i

�
k
i

�
f k(P), for i = 0; 1; : : : ; d: (7.6)

This together with Lemma 7.3 provides us with simple explicit formulas for a half of the
h-vector of the dual cyclic polytope.

Lemma 7.6

hi (c� (d; n)) =
�

n � i � 1
d � i

�
, for i = dd=2e; : : : ; d: (7.7)

Proof. Substitute f k(P) in (7.6) with the explicit formula for f k(c� (d; n)) in Lemma 7.3
(b). Exercise.

The remaining part of the h vector comes for free, as we observe that theh-vector is sym-
metric, namely, by the de�nition of hi ,

hi (P) = hd� i (P); for i = 0; 1; : : : ; bd=2c; (7.8)

where the RHS counts the LHS using theh-vector with the reversed orientation by the
vector � c. These equations, expressed in terms off -vector via (7.6), are known as the
Dehn-Sommerville Relations.

Theorem 7.7 (The Dehn-Sommerville Relations) Every simple d-polytope P satisfies
the following equations.

dX

k= i

(� 1)k

�
k
i

�
f k(P) =

dX

k= d� i

(� 1)k� d

�
k

d � i

�
f k(P), for i = 0; 1; : : : ; bd=2c: (7.9)

More explicitly, the first two equations are

dX

k=0

(� 1)k f k(P) = f d(P) = 1 ; (i.e. Euler’s Relation); (7.10)

� f 1(P) + 2 f 2(P) � 3f 3(P) + � � � + ( � 1)ddf d(P) = � f d� 1(P) + df d(P): (7.11)

The equation (7.5) shows that eachf j is a nonnegative combination ofhj 's. Therefore,
the following is a strengthening of the Upper Bound Theorem, sayingthat the h-vector is
component-wise maximized by the dual cyclic polytope.
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Theorem 7.8 (A Strengthened Upper Bound Theorem) For any simple d-polytope
P with n facets the following inequalities hold.

hi (P) � hi (c� (d; n)) , for i = 0; 1; : : : ; d: (7.12)

Proof. Let P be a simpled-polytope with n facets. The claimed inequalities are trivial
for i = 0 and i = d. By the symmetry of the h-vector, we only need to show

hi (P) � hi (c� (d; n)) �
�

n � i � 1
d � i

�
, for i = dd=2e; : : : ; d:

We use induction oni but with decreasing values. Suppose the theorem is valid fori = k + 1
(k < d ), and consider the casei = k.

We claim two inequalities forh-vectors. First we observe that for any facetF of P and
for any i ,

hi (F ) � hi +1 (P): (7.13)

This is valid because we can select a genericc such that all the vertices inF take the object
value higher than any other vertices ofP. Note that the values hi (F ) and hi +1 (P) are
invariant over choices ofc. Secondly, we have

X

F

hi (F ) = ( i + 1) hi +1 (P) + ( d � i )hi (P): (7.14)

The summation in LHS is over all facetsF of P. This equation can be veri�ed once we
observe that every vertex of a facet with indegreei in the facet has indegreei or i + 1 in
P. If it has indegreei in P, there are exactly (d � i ) facets containing it that preserve the
same indegree. If it has indegreei + 1 in P, there are exactly (i + 1) facets containing it that
decrease its indegree by one.

Now we look at the inductive step fori = k. By the two inequalities (7.14) and (7.13),
we have

(k + 1) hk+1 (P) + ( d � k)hk(P) =
X

F

hk(F ) � nhk+1 (P): (7.15)

This implies

(d � k)hk(P) � (n � k � 1)hk+1 (P); or equivalently, (7.16)

hk(P) �
n � k � 1

d � k
hk+1 (P): (7.17)

Now we use the inductive hypothesis fori = k + 1 to get

hk(P) �
n � k � 1

d � k
hk+1 (P) �

n � k � 1
d � k

�
n � k � 2
d � k � 1

�
=

�
n � k � 1

d � k

�
: (7.18)

This completes the proof.
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While the h-vector of the cyclic polytope is extremely simple, itsf -vector is rather
complicated. The formula can be written explicitly using (7.5), (7.6) and (7.8). We here
present a formula forf 0(c� (d; n)) which is quite simple.

Theorem 7.9 The maximum number of vertices a d-polytope with n facets can have is
realized by the dual cyclic polytope and is

f 0(c� (d; n)) =
�

n � d d=2e
n � d

�
+

�
n � b d=2c � 1

n � d

�
: (7.19)

By duality, this number coincides with f d� 1(c(d; n)) .
Proof. Left to the reader. Hint: use the identity:

�
n
0

�
+

�
n + 1

1

�
+ � � � +

�
n + s

s

�
=

�
n + s + 1

s

�
:
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8 Basic Computations with Polyhedra

Consider a system ofm linear inequalities ind variables

Ax � b: (8.1)

An inequality A i x � bi is called redundant in (8.1) if the set of solutions to (8.1) stays
unchanged when the inequality is removed from the system. An equivalent condition is that
there is nox satisfying A i x > b i and A j x � bj for all j 6= i .

In this section, we study basic problems in polyhedral computation such as the following
two problems:

Problem 8.1 [Single H-Redundancy]
Input: A rational matrix A 2 Qm� d, a rational vector b 2 Qm and an index k 2 [m] :=
f 1; : : : ; mg
Output: Yes if Akx � bk is redundant in Ax � b, No otherwise.

Problem 8.2 [H-Redundancy Removal]
Input: A rational matrix A 2 Qm� d, a rational vector b2 Qm

Output: An equivalent subsystem ofAx � b which is free of redundancies.

The second problem can be solved by solving the �rst problem for each inequalities, but
interestingly, one can do better than that by dynamically selecting the ordering of inequalities
to be processed.

The �gure above illustrates the H-redundancy problem. The blue region is the feasible
regionP = f x : Ax � bg. The output of the computation is the set of inequalities indicated
in red that are essential in the H-representation. Often, the sizeof output is much smaller
than the size of input.

Naturally one can pose the same problems for V-polyhedra. It turns out that those
problems can be reduced to the H-redundancy problems. We will seethat the H-redundancy
problems can be reduced further to the H-redundancy problems for the special case of H-
cones. These transformations are discussed in Section 8.4.

Here is a closely related problem that should be solved before the H-Redundancy Removal
is solved.
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Problem 8.3 [H-Dimension]
Input: A rational matrix A 2 Qm� d, a rational vector b2 Qm

Output: The dimension of the polyhedronP = f x : Ax � bg.

A typical algorithm for this computes not only the dimension ofP, but also a relative interior
point of P, see Section 8.3. One can then embed the polytope in a lower-dimensional space
so that P becomes full-dimensional.

These problems are much easier than other problems in polyhedral computation such as
the representation conversion between V- and H-representations and computing the volume
of a polytope. In fact, the problems discussed in this section are allpolynomially solvable
in the size of input.

The main goal of this section is to present many algorithms which are not only polynomial-
time but also best possible in terms of the number of LP's that must besolved, or of the
size of LP's that must be solved when the number of LP's to be solved is�xed.

For this purpose, we use the notion of LP complexity, where we count the number of
LP's and their sizes as a complexity measure. This makes sense only when solving LP's
dominates other computations such as solving systems of linear equations of sizes of same
order. This applies very well to all problems in this Section.

We denote by LP(d; m) the time necessary to solve any LP withd variables and m
inequality constraints: maxcT x subject to Ax � b, where A is m � d rational matrix.
We consider LP(d; m) is an upper bound time measured by big-ohO notation, such as
O(md3) or O(e

p
d log m ). Unlike the usual way to measure the LP complexity using the binary

encoding lengthL of input, we simply ignoreL. The main reason is that practically all of
implementations of LP algorithms depend hardly onL, but essentially and polynomially on
d and m. Further more, we are mostly interested in the case whenm is much larger thand
and at least as large as 2d. This practical observation leads to that

Assumption 8.4 We assume that LP(d; m) satisfy the following assumptions.

(a) LP(d; m) = LP( d + c1; m + c2) for any constants c1 and c2.

(b) LP(d; m) is at least of order md2, that is, 
( md2).

The �rst assumption is based on the fact that LP is solvable in a polynomial time. The
second assumption is based on the fact that solving a system of linear inequalities is at least
as hard as solving a system of linear equations of the same size (up toconstant factor),
and the Gaussian elimination has 
(md2) complexity. This second assumption will be used
throughout this chapter to argue that the time to solve a linear equality system or to compute
a rank of anm � d matrix is dominated by LP(d; m).

8.1 Single H-Redundancy Checking

Here we show that Problem 8.1 is linearly equivalent to the linear programming. The one
direction is rather obvious, that is, the Single H-redundancy checking can be done by a single
LP of the same size.
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Proposition 8.5 Problem 8.1 has No answer if and only if the following LP with I = [ m]:

Test(I , k): maximize Akx
subject to

A i x � bi ; 8i 2 I n f kg
Akx � bk + 1

(8.2)

has an optimal solution whose optimal value is strictly greater than bk .

Note that the reduction is not only polynomial but linear. Surprisingly, there is a linear
reduction from the linear programming (the linear feasibility) to the Single H-redundancy.

Proposition 8.6 The system Ax � b is consistent if and only if a special case of Problem
8.1:

is the inequality x0 � 0 redundant in Ax � b x0 and x0 � 0 (8.3)

has No answer.
Proof. Suppose thex0 � 0 is redundant. This is equivalent to the statement that
there exists no (x; x0) such that Ax � b x0 and x0 > 0. This in turn is equivalent to the
inconsistency ofAx � b.

We have shown the linear equivalence of the Single H-redundancy checking and the
LP. This implies that any redundancy checking algorithm is at least as powerful as an LP
algorithm.

In the next section, we will see that removing all H-redundancies can be easier than
solvingm LP's of size (d; m) that takes time m� LP(d; m) if the system is highly redundant.

8.2 H-Redundancy Romoval

Here we discuss the problem of removing all redundancies from an H-representation of a
polyhedron, i.e., Problem 8.2.

We shall assume that the input of Problem 8.2 is \clean" in the sense that the underlying
polyhedron P = f x : Ax � bg is full-dimensional and no inequality is a positive multiple of
another one. This assumption can be met if the preprocessing is done, namely, by embedding
the polyhedron in an appropriate subspace. This part will be discussed in Section 8.3.

As we have seen in Section 8.1, removing all redundancies can be donein m � LP(d; m)
time. Can one do better than this? Here we present an algorithm dueto Clarkson [15] which
runs much faster than the naive algorithm when the numbers of nonredundant inequalities
is small relative to m.

Let Ax � b be an input system. We assume that a pointz 2 Qd is given satisfying
Az < b, an interior point of the feasible regionP = f x : Ax � bg. At the general stage of
the algorithm, we have already detected a row index setI such that the inequality A i x � bi

is nonredundant forAx � b, for eachi 2 I . Let j be an row index which is not tested yet,
i.e. j 2 [m] n I . Clarkson's algorithm either detectskth inequality is redundant or �nds a
row index j 2 [m] n I such that A j x � bj is nonredundant.
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procedure Clarkson(A,b,z,I ,k)
begin

test whether Akx � bk is redundant in A I [f kgx � bI [f kg

by solving the LP Test(I [ f kg, k) with optimal solution x �

if nonredundant then
(c1) return (1, RayShoot(A,b,z,x � � z)) //Returns an essential index

else
(c2) return (0, k) //Returns an redundant index

endif
end

Here, the procedure RayShoot(A,b,z,r ) returns an index j of a facet-inducing hyperplane
f x : A j x = bj g hit by the ray starting from z along the direction r . It can be easily
implemented by analyzing symbolically the ray starting fromz + ( �; � 2; : : : ; �d)T along the
direction r for su�ciently small � > 0. In Figure 8.1, the dotted thick line represents the
relaxed inequality hyperplanef x : Akx = bk + 1g.

"#

$

!

"#

$

%

&' ("(≤ ) ' &' ("(≤ ) '

Figure 8.1: Clarkson's Algorithm: Left (k is redundant), Right(An essentialj is found)

Exercise 8.1 Write a procedure RayShoot(A,b,z,r ) following the speci�cation above. It
should be speci�c enough to be implemented with high level computer languages like C and
C++.

Here is the complete algorithm to remove all redundancies. We assume that an interior
point z of P = f x : Ax � bg is given.

procedure RedundacyRemovalClarkson(A,b,z)
begin

set I := ; , J := [ m]
repeat
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select an indexk from J
(�; j ) =Clarkson(A,b,z,I ,k)
if � = 1 then I := I [ f j g //Increment the essential set I
J := J n f j g

until J = ;
return I

end

Theorem 8.7 The complexity of Clarkson’s algorithm to find a minimal equivalent subsys-
tem of Ax � b is m � LP(d; s) where s is the number of nonredundant constraints in Ax � b.
Proof. At each step, Clarkson's algorithm either �nds an row indexk to be a redundant
inequality row index or discovers a new row indexj 6= k for which A j x � bj is essential.
Since the size of an LP solved hasd variables and at mosts + 1 constraints, the complexity
follows. Note that the complexity of a ray shooting isO(md). Since the number of ray
shooting is at mosts, the total time O(smd) of ray shooting is dominated bym � LP(d; s).

8.3 Computing H-Dimension

It is often important to know the dimension of a polyhedron. When a polyhedron is a V-
polyhedron with representation, it is very easy to compute its dimension. More precisely, if
P is a V-polyhedron for some generator matricesd � s matrix V and d � t matrix R, i.e.,

P = f x : x = V � + R�; 1T � = 1; � � 0; � � 0g;

then the dimension ofP is easily computable, namely by the formula,

dim P = rank
�

V R
1T 0T

�
� 1:

However, for an H-polyhedron
P = f x : Ax � bg

its dimension is nontrivial to compute. Why nontrivial? It is simply because if one knows the
dimension, one can decide whetherP is empty or not, that is the linear feasibility problem,
equivalent to LP. Then, the next question is how many LP's one has tosolve to determine
the dimension. Obviously, at least one. It is not hard to see that at most m LP's is su�cient.

In this section, we show that one can compute the dimension by solving at most d LP's.
As a byproduct, one also �nds a point in the relative interior ofP.

The �rst step is to try to �nd an interior point of P. If it is successful, the dimension is
of coursed. One can easily see that the following LP will detect the full-dimensionality:

maximize x0

subject to
Ax + 1x0 � b;

x0 � 1:

(8.4)

More precisely, we have three cases, depending on the outcome ofthe LP. Let x � be an
optimal solution and let x �

0 be the optimal value.
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Case 1: x �
0 > 0 . In this case, an optimal solutionx � is an interior point and dimP = d.

Case 2: x �
0 < 0 . In this case, the polyhedronP is empty and dimP = � 1.

Case 3: x �
0 = 0 . In this case, the polyhedronP is neither full-dimensional nor empty.

In case 3, we must do more computation. For that, we can make useof a dual optimal
solution (s� ; t � ) for the dual LP:

minimize bT s + t
subject to

AT s = 0;
1T s + t = 1;

s � 0; t � 0:

(8.5)

By strong duality, the dual optimal value is zero. This means thats� cannot be totally zero.
Let I = f i : s�

i > 0g. By the complementary slackness, at any feasible solution (x; x0) with
x0 = 0 (i.e., at any solution x for Ax � b), every inequality in A I x � bI must be tight.
We might do even further. By Gaussian elimination, we can recognize all other inequalities
in Ax � b that are forced to be equalities providedA I x = bI . Let us mergeI with these
dependent equality indices, and call it̂I . Now we are ready to solve another LP to �nd more
implicit equalities in the remaining system. For this, letC := Î , and D := [ m] n C, and set
up an LP:

maximize x0

subject to
ACx = bC ;
AD x + 1x0 � bD ;

x0 � 1:

(8.6)

At an optimal solution (x � ; x�
0), there are only two cases becausex � cannot be negative this

time. When x �
0 > 0, the solution x � is a relative interior point, and the dimension ofP is

easily computed. It isd minus the maximum number of independent equalities inA I x = bI .
When x �

0 = 0, we do essentially the same thing as we did at the very �rst stage:use the
dual optimal solution to recognize implicit equalities inAD x � bD . Then extend them
with possible dependent equalities. Another LP should be solved with extended C and its
complementD. Since every time an LP is solved, at least one independent implicit equality
is found. This shows that at mostd LP's will be solved until a relative interior point is
found. Thus we have:

Theorem 8.8 Problem 8.3 can be solved in d � LP(d; m) time.

Exercise 8.2 (Embedding a Polyhedron) Given a point z in the relative interior of P =
f Ax � bg, explain a method to embedP to a lower dimensional space so that it is full-
dimensional there.
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8.4 Reducing the Nonhomogeneous Case to the Homogeneous
Case

We de�ne the homogenization of a systemAx � b as the new system with one extra non-
negative variablex0,

Ax � b x0 and x0 � 0: (8.7)

Proposition 8.9 Let Ax � b be a consistent system. An inequality A i x � bi is redundant
in the system if and only if the corresponding inequality A i x � bi x0 is redundant in the
homogenization.

Exercise 8.3 Prove the proposition above. Show that the assumption thatAx � b being
consistent is necessary by providing a small example in whichA i x � bi is redundant in
Ax � b but A i x � bi x0 is nonredundant in the homogenization.

What we have shown above is that the H-redundancy removal for cones solves the more
general problem for polyhedra.

What about for a V-polyhedron? Can we reduce the redundancy removal for V-polyhedra
to the one for V-cones? Consider a V-polyhedron with generator pair (V; R) whereV 2 Qd� s

and R 2 Qd� t :

PV (V; R) := f x : x = V � + R�; 1T � = 1; � � 0; � � 0g:

Let vj denote thej th column of V , and r k denote thekth column of R. We say a generator
vj (r k) is redundant for PV (V; R) if removing vj from V (r k from R, respectively) does not
alter the polyhedron.

Proposition 8.10 For V 2 Qd� s and R 2 Qd� t , a generator vj (r k) is redundant for

PV (V; R) if and only if the corresponding generator
�
vj

1

�
(
�
r j

0

�
, respectively) is redundant in

the homogenization

CV (R̂) := f x : x = R̂�; � � 0g; where R̂ =
�

V R
1T 0T

�
:

Proof. The proof is straightforward. Left to the reader.

Now, we know that both the H-redundancy removal and the V-redundancy romoval
for cones are as powerful as those for polyhedra. Finally, we havethe duality of H- and
V-redundancy removals which implies that an algorithm for one problem solves both.

Proposition 8.11 Let A 2 Qm� d. Then, each inequality A i x � 0 is redundant in Ax � 0
if and only if the corresponding generator AT

i is redundant for CV (AT ).
Proof. Let A i x � 0 be redundant inAx � 0. This means there exists nox such that
A i x > 0 and A j x � 0 for all j 6= i . By the Farkas Lemma (Exercise 3.4), this is equivalent
to the existence of� � 0 such that AT

i =
P

j 6= i AT
j � j . This is equivalent to sayingAT

i is
redundant for CV (AT ). This completes the proof.

Exercise 8.4 (Dimensionality and Linearity) Given a point z in the relative interior of
CH (A) := f Ax � 0g, explain a method to �nd a basis of the linearity space ofCV (AT ).
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9 Polyhedral Representation Conversion

The Minkowski-Weyl Theorem, Theorem 3.9, shows that every convex polyhedron has two
representations, an H-representation and a V-representation. The associated problem of
computing a (minimal) V-representation from a H-representation or its converse is known
as therepresentation conversion problem for polyhedra.

One important characteristic of the representation conversion problem is that the size of
output is not easy to measure in terms of the size of input. For example, for ad-cube having
2d facets and 2d vertices, the H-to-V conversion has output whose size is exponential in the
input size and the V-to-H conversion has the output size very smallrelative to the input
size.

Given this diversity of output sizes, an ideal algorithm for the conversion problem must
be sensitive to the output size, as opposed to optimal for the worst-case output size of a
given input size. An algorithm is calledoutput-polynomial if its running time is bounded by
a polynomial function of both the input size and the output size.

Also, we must take account of the memory footprint. Some algorithms need to store a
large amount of data in the memory, while others simply do not store anything except the
input data and a few more. We say an algorithm iscompact if its space is bounded by a
polynomial function of the input size only.

One might call an algorithm ideal if it is both compact and output-polynomial. For
the representation conversion problem, there is no known output-polynomial algorithm in
general. However for the special cases of various nondegeneracy, compact output-polynomial
algorithms are known, typically based on the reverse-search paradigm, see Section 9.2.

9.1 Incremental Algorithms

In this section, we present a classical �nite algorithm, known as thedouble description (DD)
method [40]. It can be also considered as a constructive proof of Minkowski's Theorem, the
implication of (a) =) (b) in the Minkowski-Weyl Theorem, Theorem 3.10. The algorithm
is not output-polynomial as it was shown by Bremner [10]. However, itis extremely useful
for certain representation conversion problems, in particular, for highly degenerate inputs.

Suppose that anm � d matrix A is given, and letC(A) = f x : Ax � 0g. We call any
vector r 2 C(A) a ray of C(A). The DD method is an incremental algorithm to construct a
d � n matrix R such that (A; R) is a DD pair.

Let K be a subset of the row indicesf 1; 2; : : : ; mg of A and let AK denote the submatrix
of A consisting of rows indexed byK . Suppose we already found a generating matrixR for
C(AK ), or equivalently (AK ; R) is a DD pair. If A = AK , clearly we are done. Otherwise
we select any row indexi not in K and try to construct a DD pair (AK + i ; R0) using the
information of the DD pair (AK ; R). Note that K + i is a simpli�ed notation for K [ f ig.

Once this basic procedure is described, we have an algorithm to construct a generating
matrix R for C(A). This procedure can be easily understood geometrically and the reader
is strongly encouraged to draw some simple example in the three dimensional space.
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The newly introduced inequalityA i x � 0 partitions the spaceRd into three parts:

H +
i = f x 2 Rd : A i x > 0g

H 0
i = f x 2 Rd : A i x = 0g

H �
i = f x 2 Rd : A i x < 0g:

(9.1)

Let J be the set of column indices ofR and let r j denote thej th column of R. The rays r j

(j 2 J ) are then partitioned into three parts:

J + = f j 2 J : r j 2 H +
i g

J 0 = f j 2 J : r j 2 H 0
i g

J � = f j 2 J : r j 2 H �
i g:

(9.2)

We call the rays indexed byJ + , J 0, J � the positive, zero, negative rays with respect to i ,
respectively. To construct a matrixR0 from R, we generate newjJ + j � j J � j rays lying on
the i th hyperplane H 0

i by taking an appropriate positive combination of each positive rayr j

and each negative rayr j 0 and by discarding all positive rays.
The following lemma ensures that we have a DD pair (AK + i ; R0), and provides the key

procedure for the most primitive version of the DD method.

Lemma 9.1 (Main Lemma for Double Description Method) Let (AK ; R) be a DD
pair and let i be a row index of A not in K . Then the pair (AK + i ; R0) is a DD pair,
where R0 is the d � j J 0j matrix with column vectors r j ( j 2 J 0 ) defined by

J 0 = J � [ J 0 [ (J + � J � ), and
r j j 0 = ( A i r j )r j 0 � (A i r j 0)r j for each (j; j 0) 2 J + � J � :

Proof. Let C = C(AK + i ) and let C0 be the cone generated by the matrixR0. We must
prove that C = C0. By the construction, we haver j j 0 2 C for all ( j; j 0) 2 J + � J � and
C0 � C is clear.

Let x 2 C. We shall show thatx 2 C0 and henceC � C0. Sincex 2 C, x is a nonnegative
combination of r j 's over j 2 J , i.e., there exist� j � 0 for j 2 J such that

x =
X

j 2 J

� j r j : (9.3)

If there is no positive� j with j 2 J + in the expression above thenx 2 C0. Suppose there is
somek 2 J + with � k > 0. Sincex 2 C, we haveA i x � 0. This together with (9.3) implies
that there is at least oneh 2 J � with � h > 0. Now by construction,hk 2 J 0 and

rhk = ( A i rh)r k � (A i r k)rh: (9.4)

By subtracting an appropriate positive multiple of (9.4) from (9.3), we obtain an expression
of x as a positive combination of some vectorsr j (j 2 J 0) with new coe�cients � j where the
number of positive� j 's with j 2 J + [ J � is strictly smaller than in the �rst expression. As
long as there isj 2 J + with positive � j , we can apply the same transformation. Thus we
must �nd in a �nite number of steps an expression ofx without using r j with j 2 J + . This
provesx 2 C0, and henceC � C0.
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This algorithm can be used to prove Minkowski's Theorem constructively.
Proof. (of Theorem 3.10 ) By Lemma 9.1, it is su�cient to show that one can �nd an
initial DD pair ( AK ; R) for someK . The trivial case is whenK = ; and C(AK ) = Rd. In
this case, the set of 2d vectorsR = f e1; � e1; e2; � e2; : : : ; ed; � edg generates the spaceRd by
their nonnegative combinations. (Actually, one can �ndd + 1 vectors which positively span
Rd. How?) This completes the proof.
Here we write the DD method in procedural form.

procedure DoubleDescriptionMethod(A);
begin

Obtain any initial DD pair ( AK ; R)
while K 6= f 1; 2; : : : ; mg do
begin

Select any indexi from f 1; 2; : : : ; mg nK
Construct a DD pair (AK + i ; R0) from (AK ; R)

/* by using Lemma 9.1 */
R := R0 K := K + i ;

end
Output R

end.

The DD method given here is very primitive, and the straightforwardimplementation is
not quite useful, because the size ofJ increases very fast and goes beyond any tractable
limit. One reason for this is that many (perhaps, most) vectorsr j j 0 the algorithm generates
(de�ned in Lemma 9.1), are unnecessary. To avoid generating redundant generators, we
store and update the adjacency of generators. Such a re�nement can reduce the size of the
output drastically.

!" #$%&' !"#() $%&*'

+,-%./01%123456%7,%8,9,./:,6%
3950%;3.%/6</=,9:%>/).1%!%%%%$%%%%%'

?%@

?(

2)

Figure 9.1: The Double Description Algorithm
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Figure 9.1 depicts a general step of adding thei th inequality with a re�ned double
description algorithm. The polytopes should be considered as a cut section of 4-dimensional
pointed cones with some hyperplane so that each vertex represents one dimensional extreme
ray starting from the origin.

Two generators are said toadjacent if the common set of active constraints is maximal
among all pairs of generators. This means that the line segment connecting a adjacent pair
meets the new hyperplanehi = f x : A i x = 0g at a point lying on a minimal face of the cone
C(AK + i ). It is easy to see that such a point must be in any V-representation.

The double description algorithm at the ideal form not generating any redundant gener-
ators is still not easy to analyze. The main problem is that the size of aV-representation
of intermediate cone is not easy to estimate. The size also depends heavily on the insertion
order of constraints.

Here are somewhat surprising behaviors of the re�ned double desciption method with
respect to di�erent insertion orders. In the �gure below, the input is (the homogenized cone
of) a 15-dimensional polytope with 32 facets. The output is a list of 368 vertices. It is
important to note that the conversion ishighly degenerate , meaning that the number of
active inequalities at each output vertex is much higher than the dimension.

We consider the �ve di�erent orderings of the inequalities. The ordering lexmin is simply
sort the rows ofA by lexicographic ordering, comparing the �rst component �rst, then the
second in case of tie, and the third, etc. The orderingmaxcuto� (mincuto� )is a dynamic
ordering in which at each iteration the next inequality is selected to maximize (minimize)
the size jJ + j. The lexmin is a sort of shelling ordering which appears to perfom the best
among all orderings tested.
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1000
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mincutoff
random

lexmin

Figure 9.2: Comparison of Intermediate Sizes for a Degenerate Input
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A more striking comparison is given below where the input is a 10-dimensional cross
polytope with 210 facets. The output is a list of 20 vertices. The highest peak is attained
by maxcuto� ordering, following by random and mincuto�. The ordering lexmin is the best
among all and the peak intermediate size is less than 30. Note that the graph of lexmin is
too low to see it in the �gure below.
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30000
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Figure 9.3: Comparison of Intermediate Sizes for a Highly DegenrateInput

9.2 Pivoting Algorithms

One can design pivoting algorithms to visit all vertices of a convex polytope systematically.
The idea is quite simple. The graph of a convex polytope is connected,and in fact d-
connected if the polytope isd-dimensional, due to Balinski [7]. Thus, one can trace the
graph systematically until no new vertex can be found.

A polytope P and its graph (1-skeleton)
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Historically, there are many pivoting algorithms proposed by Balinski[6], Murty [42], Dyer
and Proll [19], etc. The weakness of pivoting algorithms is that when the polytope is degen-
erate, i.e., non-simple, pivoting may not be able to trace the graph ofa polytope e�ciently.
Typical way to resolve degeneracy is a symbolic perturbation of constraints which may create
an exponentially large number of new extreme points. Under the nondegeneracy assumption
that the number of active constraints at each vertex is exactlyd, the algorithm due to Dyer
and Proll [19] is an output-polynomial algorithm. Yet, it must store all visited vertices in
memory and thus is not a compact algorithm.

In this section, we present a compact output-polynomial algorithmfor the nondegenerate
case, based on the reverse search technique due to Avis and Fukuda.

The main idea is to reverse the simplex method from the optimal vertex in all possible
ways. Here the objective function is set to any generic one so thatthe optimal vertex is
unique and no edge of the polytope is parallel to an objective contour.

!!

!$

"*

#"

$"

min  x1 + x2 + x3

Also, another important thing is to make sure that the simplex algorithm is �nite and selects
a next pivot uniquely at each vertex. This can be achieved, for example, by employing the
minimum index rule (Bland's rule). Under these, the edges used by there�ned simplex
method form a directed spanning tree of the graphG(P) of a polytope P rooted at the
optimal vertex. We will see that the resulting algorithm enumeratesall f 0 vertices in time
O(mdf 0) and O(md)-space under nondegeneracy when the input H-polytope is given by m
inequalities in d variables. Thus, it is compact and output-polynomial.

For a formal description, let us de�ne two functions. A �nite local search f for a graph
G = ( V; E) with a special nodes 2 V is a function: V n f sg ! V satisfying

(L1) f v; f (v)g 2 E for eachv 2 V n f sg, and
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(L2) for eachv 2 V n f sg, 9k > 0 such that f k(v) = s.

For example, letP = f x 2 Rd : A x � bg be a simple polytope, andcT x be any generic
linear objective function. LetV be the set of all vertices ofP, s the unique optimal, andf (v)
be the vertex adjacent tov selected by the simplex method which selects a pivot uniquely if
v is not the optimal vertex.

A adjacency oracle or simply A-oracle Adj for a graph G = ( V; E) is a function (where�
a upper bound for the maximum degree ofG) satisfying:

(i) for each vertexv and each numberk with 1 � k � � the oracle returns Adj(v; k), a
vertex adjacent tov or extraneousnull (null),

(ii) if Adj( v; k) = Adj( v; k0) 6= 0 for somev 2 V, k and k0, then k = k0,

(iii) for each vertexv, f Adj( v; k) : Adj( v; k) 6= 0; 1 � k � � g is exactly the set of vertices
adjacent to v.

For example, whenP = f x 2 Rd : A x � bg is a simple polytope, letV be the set of all
vertices ofP, � be the number of nonbasic variables and Adj(v; k) be the vertex adjacent to
v obtained by pivoting on thekth nonbasic variable atv.

Now we are ready to describe a general reverse search algorithm to generate all vertices
of the underlying graphG assuming that the two functionsf and Adj are given.

procedure ReverseSearch(Adj,� ,s,f );
v := s; j := 0; (* j : neighbor counter *)
repeat

while j < � do
j := j + 1;

(r1) next := Adj( v; j );
if next 6= null then

(r2) if f (next) = v then (* reverse traverse *)
v := next; j := 0
endif

endif
endwhile ;
if v 6= s then (* forward traverse *)

(f1) u := v; v := f (v);
(f2) j := 0; repeat j := j + 1 until Adj( v; j ) = u (* restore j *)

endif
until v = s and j = �

We can evaluate the complexity of reverse search above as follows.Below we denote by
t(f ) and t(Adj) the time to evaluate the functions f and Adj, respectively.

Theorem 9.2 Suppose that a local search (G; s; f ) is given by an A-oracle. Then the time
complexity of ReverseSearch is O(� t (Adj) jV j + t(f )jE j).
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Proof. It is easy to see that the time complexity is determined by the total time spent
to execute the four lines (r1), (r2), (f1) and (f2). The �rst line (r1) is executed at most�
times for each vertex, and the total time spent for (r1) isO(� t (Adj) jV j). The line (r2) is
executed as many times as the degreedeg(v) for each vertexv, and thus the total time for
(r2) is O(t(f )jE j). The third line (f1) is executed for each vertexv in V n f sg, and hence the
total time for (f1) is O(t(f )( jV j � j Sj)). Similarly, the total time for (f2) is O(� t (Adj)( jV j)).
SincejV j � j E j, by adding up the four time complexities above, we have the claimed result.

Corollary 9.3 Suppose that a local search (G; s; f ) is given by an A-oracle. Then the time
complexity of ReverseSearch is O(� (t(Adj) + t(f )) jV j). In particular, if � , t(f ) and t(Adj)
are independent of the number jV j of vertices in G, then the time complexity is linear in the
output size jV j.
Proof. The claim follows immediately from Theorem 9.2 and the fact that 2jE j � � jV j.

One can improve the complexity of reverse search algorithms by exploiting special struc-
tures. We give the best known complexity of reverse search for the representation conversion
for convex polytopes without proof, see [4] for details.

Theorem 9.4 There is an implementation of reverse search algorithm to enumerate all
vertices of a nondegenerate H-polytope P = f x : Ax � bg in time O(mdf 0) and space O(md),
where A 2 Qm� d, b2 Qm and f 0 is the number of vertices of P . In particular, it is a compact
output-polynomial algorithm for nondegenerate inputs.

There are many applications of reverse search in geometry and combinatorics, see [5].
Finally, what is the di�erence between reverse search and depth-�rst search? The quick

answer is: reverse search is a memory-free search while depth-�rst search must store all nodes
visited so far to distinguish those vertices from the rest. In otherwords, reserve search is
depth-�rst search applied to a unique spanning tree of the graph de�ned by local search
function f .

9.3 Pivoting Algorithm vs Incremental Algorithm

� Pivoting algorithms, in particular the reverse search algorithm (lrs,lrslib [2]), work
well for high dimensional cases.

� Incremental algorithms work well for low (say, up to 12) dimensional cases and highly
degenerate cases. For example, the codes cdd/cddlib [22] and porta [13] are imple-
mented for highly degenerate cases and the code qhull [8] for low (up to 10) dimensional
cases.

� The reverse search algorithm seems to be the only method that scales very e�ciently
in massively parallel environment.

� Various comparisons of representation conversion algorithms andimplementations can
be found in the excellent article [3] by Avis, Bremner and Seidel.
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10 Hyperplane Arrangements and Point Con�gurations

In Sections 5, 6 and 7, we studied the combinatorial structure of convex polytopes. In this
section, we look at not only polytopes but also the dissection of the whole space by a set of
hyperplanes which induces a polyhedral complex. Formally, it is knownas an arragement of
hyperplanes and its dual structure is known as a con�guration of points or vectors.

10.1 Cake Cutting

An intuitively appealing way to study the dissection of the plane by a set of lines is through
cake cutting. Just consider a round cake from above (i.e, a 2-dimensional disk), and try to
cut it by a knife a few times. With m straight cuts, how many pieces can one produce? Of
course, it depends on cut intersection patterns, as one can see inFigure 10.1.

Figure 10.1: Cake Cutting Problem

Let us denote byp2(m) the maximum number of pieces one can produce bym cuts in
2D. Clearly, p2(0) = 1 and p2(1) = 2. It is not hard to give an explicit formula for this by
looking at a simple recursive formula. We can easily see that if themth cut intersects with
the previous m � 1 cuts at distinct points (in the interior of the cake), then it generates
additional m pieces. It is obvious that this is an upper bound of the number of pieces one
can generate.

2

3 m=4
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Is this upper bound attainable? We argue that this is always attainable by placing
cuts properly. A 2D cake cutting with m cuts is de�ned to be nondegenerate if any two
distinct cuts intersect in the interior of the cake and no three distinct cuts have a common
intersection. For any m, nondegenerate cuts exist. Just placem cuts so that no two cuts
are parallel and no three cuts intersect. If some two cuts do not intersect in the interior of
the cake, just dilate the cake (centered at the origin) without changing the cut placements.
If the dilation is large enough, all intersections of the lines will be placed inside the cake.
Then, shrink the whole space so that the cake becomes the originalsize.

This observation leads to a simple recursion:

p2(m) = p2(m � 1) + m (10.1)

which implies

p2(m) = p2(0) + 1 + 2 + � � � + m = 1 +
(m + 1) m

2
: (10.2)

Now we go up to one higher dimension. The cake looks like a 3-dimensional ball, and we
try to cut out the largest number of pieces withm cuts. We now imagine how a \watermelon"
can be dissected into pieces by a knife into pieces, see Figure 10.2. (Acut does not go through
the center although the �gure shows such a case.)

Figure 10.2: 3-Dimensional Cake Cutting Problem

Let us denote byp3(m) the maximum number of pieces one can produce bym cuts
in 3 dimension. Can one write a simple recursive formula forp3(m)? Yes, it is possible,
once one notices that the cut section atmth cut in the 3D cake could look like a 2D cake
cutting at ( m � 1)st step, as long as themth cut intersects with the previous (m � 1) cuts
at distinct lines. A key observation is that the number of 2D pieces atthe cut section is
exactly the increment of the number of pieces bymth cut. Thus, when the mth cut section
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is nondegenerate, the increment is largest and thus the observation leads to the recursion

p3(m) = p3(m � 1) + p2(m � 1) (10.3)

= p3(m � 1) + 1 +
m(m � 1)

2

= p3(0) + m +
mX

i =1

i (i � 1)
2

= 1 + m +
1
2

 
mX

i =1

i2 �
mX

i =1

i

!

= 1 + m +
1
6

(m + 1)
�

m +
1
2

�
m �

1
4

m(m + 1) : (10.4)

(Recall the identity:
mX

i =1

i2 =
1
6

(m + 1)(2 m + 1) m )

We have two explicit formulas, one for 2D (10.2) and the other for 3D(10.4). Can we guess
a general formula forpd(m)? Well, not quite easy to guess from what we have. But, it is
much easier once we rewrite the two equations in the following form:

p2(m) =
�

m
0

�
+

�
m
1

�
+

�
m
2

�

p3(m) =
�

m
0

�
+

�
m
1

�
+

�
m
2

�
+

�
m
3

�
:

(10.5)

Exercise 10.1 Verify the correctness of the equations (10.5).

Now, we are ready to prove the general cake cutting theorem.

Theorem 10.1 The number pd(m) of the maximum number of pieces dissected from the
d-dimensional ball by m (hyperplane) cuts is given by

pd(m) =
dX

i =0

�
m
i

�
: (10.6)

Proof. We prove the correctness of the formula and the fact that the the value is attained
by any nondegenerate cake cut, by induction ond. Here, we say ad-dimensional cake cutting
of a d-ball (cake) with m cuts is de�ned to benondegenerate if any d distinct cuts intersect
in the interior of the cake and no (d + 1) distinct cuts have a common intersection. The
formula is correct for d = 2 and attained by any nondegenerate cutting. Consider any
unknown cased assuming that the formula is correct for any smaller dimension. Firstof all,
m = 0, the formula pd(m) is correct that is 1. Here we use second induction onm. Consider
any unknown casem assuming that the formula is correct for any smaller values ofm. By
extending the recursion (10.3), we have

pd(m) = pd(m � 1) + pd� 1(m � 1): (10.7)
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By induction hypothesis, one can apply the formula to the RHS and wehave:

pd(m) =
�

m � 1
0

�
+

�
m � 1

1

�
+ � � � +

�
m � 1

d

�

+
�

m � 1
0

�
+ � � � +

�
m � 1
d � 1

�
:

Finally, since
� m� 1

� 1

�
= 0, the last equation above leads to

pd(m) =
dX

k=0

��
m � 1

k

�
+

�
m � 1
k � 1

��

=
dX

k=0

�
m
k

�
: (10.8)

This completes the proof.

10.2 Arrangements of Hyperplanes and Zonotopes

Cake cutting is a less formal way of presenting the mathematical notion of arrangements of
hyperplanes inRd. A �nite family A = f hi : i = 1; 2; : : : ; mg of hyperplanes inRd is called
an arrangement of hyperplanes.

h1

h2

h3

h4

h5

We are mostly interested in combinatorial structures underlying hyperplane arrange-
ments. For this, it is convenient to de�ne the partition of the spaceRd into three sets:

h+
i = f x : A i x < b i g; (10.9)

h0
i = f x : A i x = bi g; (10.10)

h�
i = f x : A i x > b i g: (10.11)



IP (Fukuda) v.2015-02-14 72

h1

h2

h3

h4

h5

+-

-

-+
+

_

+

_

+

(0-0-+) (+++++)

(++++0)

There is a natural way to associate each pointx in the spaceRd with the sign vector
� (x) 2 f� ; 0; + gm de�ned by:

� (x) i =

8
<

:

+ if x 2 h+
i

0 if x 2 h0
i

� if x 2 h�
i

i 2 E:

The set of points with a given sign vector is a relatively open polyhedron, is called aopen
face of the arrangement, and its topological closure is called aface of the arrangement. The
full dimensional faces are called thecells or regions of the arrangement. The set of all faces
forms a polyhedral complex, called thecomplex of the arrangement . One can represent the
facial incidence in the complex by a binary relation among sign vectors. For two sign vectors
X; Y 2 f� ; 0; + gm , we sayX conforms to Y (denoted asX 4 Y) if i 2 [m] and X i 6= 0
implies X i = Yi . The poset � (Rd) := f � (x) : x 2 Rdg ordered by conformal relation is
a combinatorial representation of the complex. This poset is theface poset F (A ) of the
arrangement A.

The posetF (A ) behaves nicely if all the hyperplanes contains the origin. An arrangement
of hyperplanes in which all its hyperplanes contain the origin 0 is called acentral arrangement
of hyperplanes.

h1

h2

h3

0

h4

+
-

- + + -
-

+

For example,F (A ) contains the zero vector0 which is the unique smallest element. Also,
it is symmetric with respect to the origin: if a sign vectorX is in F (A ), its negative � X is
in F (A ). By adding the arti�cial greatest element 1 of all 1's to F (A ), we obtain what we
call the face latticeF̂ (A ) of the central arrangement. We will see this lattice is isomorphic
to the lattice of a very special polytope.
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Let A be a central arrangement of hyperplanes represented by a matrix A, i.e, hi =
f x : A i x = 0g; 8i = 1; : : : ; m. Geometrically, it is convenient to look at the cut section
of the arrangement with the unit (d � 1)-sphereSd� 1 := f x 2 Rd : jj xjj = 1g, where each
hyperplane becomes a (d� 2)-spheresi := hi \ Sd� 1. Thus, the cut section is an arrangement
of (d � 2)-spheres in the unit sphereSd� 1. The complex of the arrangement is essentially
represented in the sphere arrangement, namely,� (Rd) = � (Sd) [ f 0g.

S1

S2

S4

S3

+
-

+ -

+
-

+-

(-+++)

(00++)

(-0++)

Consider the following H-polyhedron given by 2m inequalities:

PA = f x : yT A x � 1; 8 y 2 f� 1; +1gmg:

Theorem 10.2 Let A be a column full rank matrix representing a central arrangement A .
Then PA is a polytope, and the face lattice F̂ (A ) of A is isomorphic to the face lattice of the
polytope PA .

The central arrangementA and the polytopePA

The polar of the polytopePA is a very special polytope. In fact, it is a zonotope.

(PA )� = convf yT A 2 Rd : y 2 f� 1; +1gmg

= f yT A 2 Rd : y 2 [� 1; +1]mg

= L1 + L2 + � � � + Lm ;

where eachgenerator L i is the line segment [� A i ; A i ].
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(P A) *

10.3 Face Counting Formulas for Arrangements and Zonotopes

We denote byf k(A ) the number ofk-dimensional faces of an arrangementA of hyperplanes
in Rd. We assume all arrangements are central and thus can be seen asa sphere arrangement
in Sd� 1.

S1

S2

S4

S3

+
-

+ -

+
-

+-

(-+++)

(00++)

(-0++)

With the sphere arrangement setting, it is not hard to relate any central arrangement ofm
hyperpanes inRd to a cake cutting. Let s0

m be the last sphere in the arrangement. It is the
boundary of two hemispheress+

m := h+
m \ Sd� 1 and s�

m := h�
m \ Sd� 1. The arrangement of

spheres restricted to one of the hemispheres is combinatorially equivalent to the cake cutting
of a d � 1-dimensional ball bym � 1 cuts. This observation together with Theorem 10.1
implies the following theorem.

Theorem 10.3 (Upper Bound Theorem for Arrangements) For any central arrange-
ment A of m hyperplanes in Rd,

f d(A ) � 2
d� 1X

i =0

�
m � 1

i

�
and f 1(A ) � 2

�
m

d � 1

�
:

Note that if one restrict the arrangement to the unit sphere, theLHS expressions represent
f d� 1(A \ Sd� 1) and f 0(A \ Sd� 1).

Using the duality of arrangements and zonotopes, Theorem 10.3 implies the upper bound
theorem for zonotopes.
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Theorem 10.4 (Upper Bound Theorem for Zonotopes) Let P be a d-dimensional zono-
tope given by m generators (m � d). Then,

f 0(P) � 2
d� 1X

i =0

�
m � 1

i

�
and f d� 1(P) � 2

�
m

d � 1

�
:

For �xed d, both f d� 1(P) and f 0(P) are O(md� 1).

10.4 A Point Con�guration and the Associated Arrangement

A point configuration is a setP = f p1; p2; : : : ; png of points in Rd. The relative locations of
the points with respect to an arbitrary hyperplane represent theunderlying combinatorial
structure.

!

"

#

$
%

&

'

(

Let p̂i =
�
pi

1

�
be the lifted points in Rd+1 , and the hyperplaneshi = f x : p̂T

i x = 0g. The

resulting arrangementA = f h1; : : : ; hng in Rd+1 encodes the combinatorial structure ofP
nicely.

A open halfspaceh+ is represented by the sign vectorX 2 f + ; � ; 0gn of a region in the
dual hyperplane arrangement withj 2 X + i� pj 2 h+ .

xd+1

4

h4 1 2
3

5

6

primal

x1

h

xd+1=1

(+,-,-,+,+,-)

h2

The partition ( f 1; 4; 5g; f 2; 3; 6g) by the hyperplaneh corresponds to the region (+; � ; � ; + ; + ; � ).
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10.4.1 Application: Largest Feasible Subsystem

Given an inconsistent linear inequality systemAx < b , �nd a subsystem that is consistent
and largest possible. In other words, try to remove as few inequalities as possible to make
it feasible.

!

"

#

$

%

-4

-3

-3

-2

-2

-3 -3

-4

-3

-4-3

-4

-5

-3

-5

&

-3

-4

-3

-2

This problem is known to be NP-hard. One must rely on some kind of enumeration or
approximation algorithms to solve this.

10.4.2 Applications: Best Separation of Points by a Hyperpl ane

Given two blue and red sets of points inRd, �nd a (separation) hyperplane which is best
possible, i.e. the number of misclassi�ed points is minimized.

This problem is NP-hard, and in fact, one can reduce this to the largest feasible subsystem
problem. The number of separations represents the underlying complexity of enumeration.
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11 Computing with Arrangements and Zonotopes

As we learned in the previous section that central arrangements of hyperplanes and zono-
topes are essentially the same object mathematically. More speci�cally, if A (A) is a central
arrangement with anm� d representation matrixA, then its face latticeÂ is anti-isomorphic
to the zonotopeZ(A) generated by the line segmentsL i = [ � A i ; A i ], j 2 [m].

This duality implies that one can translate an algorithm for arrangements to an algorithm
for zonotopes. In particular, the following pairs of problems with input matrix A given are
equivalent.

Problem 11.1 Cell Enumeration for Arrangements/Vertex Enumeration for Zonotopes

(a) Generating all cells ofA (A).

(b) Generating all vertices ofZ (A).

Problem 11.2 Vertex Enumeration for Arrangements/Facet Enumeration for Zonotopes

(a) Generating all 1-faces (rays) ofA (A).

(b) Generating all facets ofZ (A).

Problem 11.3 Face Enumeration for Arrangements/Face Enumeration for Zonotopes

(a) Generating all faces ofA (A).

(b) Generating all faces ofZ (A).

There is a compact output-polynomial algorithm [5] due to Avis and Fukuda for Problem
11.1. Also, there is a worst-case optimal algorithm [20] due to Edelsbrunner, O'Rourke and
Seidel for Problem 11.1.

There is a output-polynomial algorithm [49] due to Seymour for Problem 11.2. No com-
pact output-polynomial algorithm is known for Problem 11.2. When input is nondegenerate,
Problem 11.2 has a trivial algorithm which is compact and output-polynomial, just go though
all

� m
d� 1

�
combinations. This suggests that when input is only \slightly" degenerate, the naive

algorithm might be practical.
The paper [27] shows that there is an output-polynomial algorithm to generate all faces

of A (A) from the list of cells. This means that together with the compact output-polynomial
algorithm [5] for Problem 11.1, Problem 11.3 can be solved by an output-polynomial algo-
rithm.

11.1 Cell Generation for Arrangements

Here we present the reverse search algorithm [5] which is the only compact output-polynomial
algorithm for generating all cells of an arrangement. By duality, thisis a compact output-
polynomial algorithm for enumerating all vertices of a zonotope.

Let A be an arrangement of distinct hyperplanesf hi : i 2 [m]g in Rd, where each
hyperplane is given by a linear equalityhi = f x : A i x = bi g. The two sides ofhi are
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h+
i = f x : A i x � bi g and h�

i = f x : A i x � bi g. For eachx 2 Rd, the sign vector� (x) of x is
the vector in f� ; 0; + gm de�ned by

� (x) i =

8
<

:

� if x 2 h�
i

0 if x 2 hi

+ if x 2 h+
i

(i 2 [m]):

Let VCELL be the set of sign vectors of points inRd whose nonzero support is [m]. We can
identify each vectorc in VCELL with the open cell (opend-face) of the arrangement de�ned
by f x : � (x) = cg. For two cells c and c0, let sep(c; c0) be the set of separators ofc and c0,
that is, the set of elementsi in [m] such that ci and c0

i have opposite signs. We say that two
cells c and c0 are adjacent in GCELL if they di�er in only one component, or equivalently,
jsep(c; c0)j = 1. The following lemma is important.

Lemma 11.4 For any two distinct cells c and c0 in VCELL , there exists a cell c00which is
adjacent to c and sep(c; c00) � sep(c; c0).
Proof. Let c and c0 be two distinct cells, and letx (x0) be a point in c (in c0, respectively)
in general position. Moving fromx toward x0 on the line segment [x; x0], we encounter the
sequence of cells:co = c; c1; c2; : : : ; ck = c0, and we can easily verify thatc1 is adjacent to c
and sep(c; c1) � sep(c; c0).

Let us assume thatV contains the cellc� of all +'s. Lemma 11.4 implies that for each cell
c di�erent from c� , there is a cellc00which is adjacent toc and sep(c� ; c00) � sep(c� ; c). Let
us de�ne f CELL (c) as suchc00that is lexico-largest (i.e., the unique element insep(c; c00) is
smallest possible). Then, (GCELL ; SCELL ; f CELL ) is a �nite local search with SCELL = f c� g.

Figure 11.1 describes the trace of the local search on a small example with d = 2 and
m = 4.

By reversing this local search, we obtain an algorithm to list all cells in an arrangement.
There are a few things to be explained for an implementation. First, we assumed that the
cell c� of all +'s is given, but we can pick up any cellc in the arrangement, and consider it as
the cell of all +'s since replacing some equalityA i x = bi by � A i x = � bi does not essentially
change the arrangement. Note that one can obtain an initial cell bypicking up any random
point in Rd and perturbing it if it lies on some hyperplanes.

Now, how can we realize ReverseSearch(AdjCELL ,� CELL ,SCELL ,f CELL ) in an e�cient way?
First we can set � CELL = m and SCELL = f c� g. For any cell c 2 VCELL and k 2 M , the
function Adj CELL (c; k) can be realized via solving an LP of the form

minimize (maximize) yk

subject to y = Ax � b;
yi � 0 for all i 6= k with ci = + ;
yi � 0 for all i 6= k with ci = � ;

(11.1)

where minimization (maximization) is chosen whenck = + ( ck = � , respectively). The
function returns the adjacent cellc0 with sep(c; c0) = f kg if and only if LP (11.1) has a
feasible solution with negative (positive) objective value. The timet(Adj CELL ) depends on
how an LP with d variables andm � 1 inequalities is solved. We denote this as a function
LP(d; m) of m and d, as we used this notation in Section 8.
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Figure 11.1: An arrangement of hyperplanes and the trace off CELL

There is a straightforward implementation off CELL , which solves a sequence of LP's
similar to (11.1) with objective functions y1; y2; y3; : : :. This means we may have to solve
O(m) LP's in the worst case. Presently we don't know how to implement it in amore
e�cient manner.

Theorem 11.5 There is an implementation of ReverseSearch(Adj CELL , � CELL , SCELL , f CELL )
for the cell enumeration problem with time complexity O(m d LP(d; m)jVCELL j) and space
complexity O(m d).
Proof. To prove this, �rst we recall that Theorem 9.2 says, the time complexity of
ReverseSearch isO(� t (Adj) jV j+ t(f )jE j). As we remarked earlier,� CELL = m, t(Adj CELL ) =
O(LP( d; m)), and t(f CELL ) = O(m LP(d; m)). Since jECELL j � d jVCELL j holds for any
arrangement (see [27]), the claimed time complexity follows. The space complexity is clearly
same as the input sizeO(m d).
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12 Minkowski Additions of Polytopes

A zonotope is a very special Minkowski sum of polytopes, namely, a Minkowski of line
segments. In this section, we study the complexity of Minkowski sums of polytopesP1, : : :,
Pk in Rd and some algorithms for computing Minkowski sums of polytopes.

+ =

There are three basic variations of the problem. When input is H-polytopes and output is
also H-polytope, Tiwary [50] has recently proved that the associated decision problem is NP-
hard for k = 2. Here the associated decision problem is to test whether a given H-polytope
P is the Minkowski sum of given H-polytopesP1, : : :, Pk . When input is V-polytopes and
output is H-polytope, the problem contains the representation conversion for polytopes as a
special case (k = 1) whose complexity is still unknown. The last case when both input and
output are V-polytopes is the only case for which an output-polynomial algorithm is known.

In this section, we present a compact output-polynomial algorithmfor the last case. The
algorithm is a natural extension of (the dual form of) the reversesearch algorithm given in
Section 11.1.

Faces, Minkowski Decomposition and Adjacency

For a polytope P and for any vector c 2 Rd, the set of maximizersx of the inner product
cT x over P is denoted byS(P; c). Thus each nonempty face ofP is S(P; c) for some c.
We denote byF (P) the set of faces ofP, by Fi (P) the set of i -dimensional faces, and by
f i (P) the number of i -dimensional faces, fori = � 1; 0; : : : ; d, For each nonempty faceF ,
the relatively open polyhedral cone of outer normals ofP at F is denoted by N (F ; P).
Thus, c 2 N (F ; P) if and only if F = S(P; c). The normal fan N (P) of P is the cell
complex f N (F ; P)jF 2 F (P)g whose body isRd. If F is i -dimensional (i = 0; 1; : : : ; d), the
normal coneN (F ; P) is (d� i )-dimensional. Thus the extreme points ofP are in one-to-one
correspondence with the full dimensional faces (which we call theregions or cells) of the
complex.

Proposition 12.1 Let P1, P2, ..., Pk be polytopes in Rd and let P = P1 + P2 + � � � + Pk .
Then a nonempty subset F of P is a face of P if and only if F = F1 + F2 + � � � + Fk for some
face Fi of Pi such that there exists c 2 Rd (not depending on i) with Fi = S(Pi ; c) for all i .
Furthermore, the decomposition F = F1 + F2 + � � � + Fk of any nonempty face F is unique.
Proof. The equivalence follows directly from the obvious relation [30, Lemma 2.1.4]

S(P1 + P2 + � � � + Pk ; c) = S(P1; c) + S(P2; c) + � � � + S(Pk ; c) for any c 2 Rd:
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For the uniqueness, letF be a nonempty face withF = S(P; c) for some c and let F =
F1 + F2 + � � � + Fk be any decomposition. First, note thatFi � S(P;c) for all i , because
the value cT x for any x 2 F is the sum of the maximum valuescT x i subject to x i 2 Pi for
i = 1; : : : ; k, and thus if x 2 F and x = x1 + x2 + � � � + xk for x i 2 Fi , then x i 2 S(Pi ; c).
Now suppose there existsFi properly contained in S(Pi ; c). Let v be an extreme point of
S(Pi ; c) not in Fi . Then there is a linear functionwT x such that wT v is strictly greater than
any value attained byx 2 Fi . Now let x � be any point attaining the maximum ofwT x over
the polytope F1 + F2 + � � � Fi � 1 + Fi +1 + � � � + Fk . Clearly x � + v 2 F but this point cannot
be in F1 + F2 + � � � + Fk , a contradiction. This proves the uniqueness.

We refer the unique decompositionF = F1 + F2 + � � � + Fk of a nonempty faceF as the
Minkowski decomposition. Here, the dimension ofF is at least as large as the dimension of
eachFi . Thus we have the following.

Corollary 12.2 Let P1, P2, ..., Pk be polytopes in Rd and let P = P1 + P2 + � � � + Pk . A
vector v 2 P is an extreme point of P if and only if v = v1 + v2 + � � � + vk for some extreme
point vi of Pi and there exists c 2 Rd with f vi g = S(Pi ; c) for all i .

For our algorithm to be presented in the next section, it is importantto characterize the
adjacency of extreme points inP.

Corollary 12.3 Let P1, P2, ..., Pk be polytopes in Rd and let P = P1 + P2 + � � � + Pk . A
subset E of P is an edge of P if and only if E = E1 + E2 + � � � + Ek for some face E i of Pi

such that dim(E i ) = 0 or 1 for each i and all faces E i of dimension 1 are parallel, and there
exists c 2 Rd with E i = S(Pi ; c) for all i .

The following variation of the above is useful for the algorithm to be presented. The
essential meaning is that the adjacency of extreme points is inherited from those of Minkowski
summands.

Proposition 12.4 Let P1, P2, ..., Pk be polytopes in Rd and let P = P1 + P2 + � � � + Pk .
Let u and v be adjacent extreme points of P with the Minkowski decompositions: u = u1 +
u2 + � � � + uk and v = v1 + v2 + � � � + vk . Then ui and vi are either equal or adjacent in Pi

for each i .
Proof. Let u and v be adjacent extreme points. It is su�cient to show that [u; v] =
[u1; v1] + [ u2; v2] + � � � + [ uk ; vk ] and each [ui ; vi ] is a face ofPi . Let c 2 Rd be such that
[u; v] = S(P; c). Because [u; v] = S(P1; c) + S(P2; c) + � � � + S(Pk ; c) and by the uniqueness
of decomposition ofu and v, both uj and vj are in S(Pj ; c), for all j . This implies that
[uj ; vj ] � S(Pj ; c), for all j . On the other hand, one can easily see that in general [u; v] �
[u1; v1] + [ u2; v2] + � � � + [ uk ; vk ]. The last two relations give [uj ; vj ] = S(Pj ; c) for all j . This
completes the proof.

This proposition immediately provides a polynomial algorithm for listing all neighbors
of a given extreme point using linear programming.
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12.1 Complexity of Minskowski Sums of V-Polytopes

The nontriviality of computing Minkowski sums of V-polytopes can beunderstood by how
the complexity of Minkowski sums varies from some instances to another. In particular, we
are most concerned with the complexity of sums in terms of the size of summands.

The �rst proposition shows that the vertex complexity of Minknowski sums is linearly
bounded by the vertex complexity of summand polytopes.

Proposition 12.5 (Linearly Bounded Minkowski-Addition) . For each k � 2 and
d � 2, there is an infinite family of Minkowski additions for which f 0(P1 + P2 + � � � + Pk) �
f 0(P1) + f 0(P2) + � � � + f 0(Pk).
Proof. Supposek � 2 and d � 2. First pick up any d-polytope, sayQ, with at least k
extreme points, and selectk extreme points. For eachj th selected extreme pointvj , make a
new polytopePj from Q by truncating only vj with one or more hyperplanes. Now we claim
that the number f 0(P1 + P2 + � � � + Pk) � f 0(P1) + f 0(P2) + � � � + f 0(Pk). See Figure 12.1
for an example fork = 2, d = 3 and Q is a 3-cube. To see this, letv be an extreme point of
Pj for some �xed j . There are three cases. The �rst case is whenv is an unselected one, i.e.
an extreme point ofQ not selected. In this case, it can be an Minkowski summand of an
extreme point of P in a unique way, since any linear function maximized exactly atv over
Pj is maximized exactly atv over other Pi 's. The second case is whenv is a newly created
vertex by the truncation of vj . Since it is obtained by the truncation ofvj , any linear function
maximized exactly at v over Pj is maximized exactly atvj over other other Pi 's. The last
case is whenv = vi for somei 6= j . This case is essentially the same as the second case
wherev contributes uniquely to a new extreme point with each truncation vertex of Pi . By
Corollary 12.2, every extreme point ofPj contributes at most once tof 0(P1 + P2 + � � � + Pk).
This completes the proof.

+ =

Figure 12.1: Minkowski Sum of Truncated Cubes

The following theorem gives the other extreme to the previous proposition. Namely, the
obvious upper bound of the vertex complexity can be achieved for alarge class of Minkowski
sums of polytopes.
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Theorem 12.6 (Tight Upper Bound [28]) .
In dimension d � 3, it is possible to choose k (� d � 1) polytopes P1; : : : ; Pk so that the
trivial upper bound for the number of vertices is attained by their Minkowski sum.

f 0(P1 + P2 + � � � + Pk) = f 0(P1) � f 0(P2) � � � � � f 0(Pk):

Proof. Here we give outline only, see [28] for a precise construction. Onk (� d � 1)
orthogonal planes inRd, place vi points in convex position. Perturb the points slightly to
make eachPi full dimensional. Figure 12.2 shows the case whenf 0(P1) = f 0(P2) = 4 and
f 0(P) = f 0(P1) � f 0(P2) = 16

+ =

Figure 12.2: Minkowski Sum of (d � 1) Thin Polytopes in Orthogonal Spaces

12.2 Extension of a Zonotope Construction Algorithm

We assume in this section thatP1, P2, ..., Pk are polytopes inRd given by the setsV1,
V2, ..., Vk of extreme points. We also assume that the graphG(Pj ) of Pj is given by the
adjacency list (Adjj (v; i) : i = 1; : : : ; � j ) of vertices adjacent to vertexv 2 Vj in graph G(Pj ),
where � j is the maximum degree ofG(Pj ) for each j = 1; : : : ; k. If the degree degj (v) of
v is less than� j in G(Pj ), we assume that Adjj (v; i) = null for all i > degj (v). Finally
we de�ne � = � 1 + � 2 + � � � + � k , an upper bound of the maximum degree ofG(P), due to
Proposition 12.4. For example, when the input polytopes are simple and full dimensional
then � j = d for all j and � = k d. Note that for a given setVj , one can compute the adjacency
list in polynomial time using linear programming.

Recall that the Minkowski addition problem is to compute the setV of extreme points of
P = P1 + P2 + � � � + Pk . We shall present a compact polynomial algorithm for the Minkowski
addition problem.

The key idea in our algorithm design

The main algorithmic idea is quite simple. Just like for the vertex enumeration for convex
polyhedra using reverse search given in Section 9.2, it traces a directed spanning treeT of
the graph G(P) of P rooted at an initial extreme point v� . The di�erence from the vertex
enumeration algorithm is that the polytopeP is not given by a system of inequalities (i.e.
not an H-polytope) in the present setting but as a Minkowski-addition of V-polytopes. Thus
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we need to introduce a new way of de�ning a directed spanning tree that is easy to trace.
We shall use the following simple geometric property of normal fans.

Proposition 12.7 Let v and v0 be two distinct extreme points of P , and let c 2 N (v; P)
and c0 2 N (v0; P). Then there exists an extreme point v00adjacent to v such that N (v00; P)
contains a point of form (1 � � )c + �c 0 for some 0 � � � 1.
Proof. Since v 6= v0, their outer normal cones are two distinct full dimensional cones
in the normal fan N (P). This means that the parameterized pointt(� ) := c + � (c0 � c)
(0 � � � 1) in the line segment [c; c0] must leave at least one of the bounding halfspaces of
the �rst cone N (v; P) as � increases from 0 to 1. Since the bounding halfspaces ofN (v; P)
are in one-to-one correspondence with the edges ofG incident to v, any one of the halfspaces
violated �rst corresponds to a vertexv00adjacent to v claimed by the proposition.

Let us �x v� as an initial extreme point ofP. Finding one extreme point ofP is easy.
Just select any genericc 2 Rd, and �nd the unique maximizer extreme pointvi of cT x over
Pi , for eachi . The point v = v1 + v2 + � � � + vk is an extreme point ofP.

Now we construct a directed spanning tree ofG(P) rooted at v� as follows. Letv 2 V
be any vertex di�erent from v� . We assume for the moment that there is some canonical
way to select an interior point of the normal cone ofP at any given vertex, as we shall give
one method to determine such a point later. Letc and c� be the canonical vector ofN (v; P)
and N (v� ; P), respectively. By Proposition 12.7, by settingv0 = v� , we know that there
is a vertex v00adjacent to v such that N (v00; P) meets the segment [c; c� ]. In general there
might be several such verticesv00 (degeneracy). We break ties by the standard symbolic
perturbation of c as c + ( � 1; � 2; : : : ; �d)T for su�ciently small � > 0. De�ne the mapping
f : V n f v� g ! V as f (v) = v00. This mapping, called alocal search function in reverse
search, determines the directed spanning treeT(f ) = ( V; E(f )) rooted at v� , whereE(f ) is
the set of directed edgesf (v; f (v)) jv 2 V n f v� gg.

Proposition 12.8 The digraph T(f ) is a spanning tree of G(P) (as undirected graph) and
v� is a unique sink node of T(f ).
Proof. By the construction, v� is a unique sink node ofT(f ). It is su�cient to show that
T(f ) has no directed cycle. For this, take any edge (v; v00= f (v)) 2 E(f ). Let c, c� be the
canonical vector forv, v� , respectively. Without loss of generality, we assume nondegeneracy,
since one can replacec with the perturbed vector c + ( � 1; � 2; : : : ; �d)T . Sincec is an interior
point of N (v; P),

cT (v � v00) > 0: (12.1)

Again, by the construction and because the canonical points are selected as interior points of
the associated normal cones, there exists 0< � < 1 such that ĉ := (1 � � )c+ �c � 2 N (v00; P).
This implies ĉT (v00� v) > 0, that is,

0 < ((1 � � )c + �c � )T (v00� v)

= (1 � � )cT (v00� v) + � (c� )T (v00� v)

< � (c� )T (v00� v) ( by (12.1) ) :
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This implies that the vertex v00attains a strictly higher inner product with c� than v. There-
fore, there is no directed cycle inT(f ).

Figure 12.3 shows an example of the directed spanning treeT(f ) in green.

v* v*

Figure 12.3: The GraphG(P) and A Rooted Spanning TreeT(f )

A reverse search algorithm, to be presented below, traces reversely the tree from the root
v� in depth-�rst manner, using an adjacency oracle.

The critical computation in our algorithm is solving a linear programmingproblem. We
denote by LP(d; m) the time, as we used in Section 8. necessary to solve a linear programming
in d variables andm inequalities.

Now we can state the complexity of our algorithm.

Theorem 12.9 There is a compact polynomial algorithm for the Minkowski addition of k
polytopes that runs in time O(� LP(d; � )f 0(P)) and space linear in the input size.

The algorithm

The sequel of the section is devoted to present the technical details of a reverse search
algorithm that traces T(f ) starting from its root vertex v� against the orientation of edges.
We shall prove Theorem 12.9 at the end.

As usual, our reverse search algorithm requires, in addition to the local search function
f , an adjacency oracle function that implicitly determines the graphG(P).

Let v be any vertex ofP with the Minkowski decompositionv = v1 + v2 + � � � + vk (see,
Corollary ??). Let

� = f (j; i ) : j = 1; : : : ; k and i = 1; : : : ; � j g: (12.2)

Recall that for any (j; i ) 2 �, Adj j (vj ; i ) is the i th vertex adjacent to vj whenever it is not
null . We shall call a pair (j; i ) valid for v if Adj j (vj ; i ) 6= null , and invalid otherwise. Let
us de�ne the associated edge vectorsej (vj ; i ) by

ej (vj ; i ) =

(
Adj j (vj ; i ) � vj (j; i ) is valid for v

null otherwise.
(12.3)
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Proposition 12.4 shows that all edges ofP incident to v are coming from the edges incident
to vj 's, or more precisely, each edge ofP incident to v is parallel to someej (vj ; i ). This
immediately implies that � is an obvious upper bound of the degree ofv. For each (s; r) 2 �,
let us group the same (parallel) directions together as

�( v; s; r) = f (j; i ) 2 � : ej (vj ; i ) k es(vs; r )g: (12.4)

Consider it as the empty set if (s; r) is invalid. Now, for any given pair (s; r) 2 �, checking
whether es(vs; r ) determines an edge direction ofP is easily reducible to an LP (or more
precisely, a linear feasibility problem):

es(vs; r )T � < 0;
ej (vj ; i )T � � 0 for all valid (j; i ) 62�( v; s; r):

(12.5)

More precisely, the system (12.5) has a solution� if and only if the direction es(vs; r )
determines an edge ofP incident to v. If it has a feasible solution, then by Proposition 12.4,
the vertex v̂ adjacent to v along this direction is given by

v̂ = v̂1 + v̂2 + � � � + v̂k

v̂j =

(
Adj j (vj ; i ) if there exists i such that (j; i ) 2 �( v; s; r)

vj otherwise.

Let us denote by �( v) as the set of all pairs (s; r) 2 � such that es(vs; r ) determines an edge
of P and (s; r) is a member of �( v; s; r) with the smallest �rst index. This set represents a
duplication-free index set of all edge directions atv.

Now we are ready to de�ne our adjacency oracle as a function Adj :V � � ! V [ f nullg
such that

Adj( v; (s; r)) =

(
v̂ if (s; r) 2 �( v)

null otherwise.
(12.6)

Lemma 12.10 One can evaluate the adjacency oracle Adj( v; (s; r)) in time LP(d; � ).
Proof. The essential part of the evaluation is solving the system (12.5). Since � = j� j,
the system hasd variables and at most� inequalities and the claim follows.

Lemma 12.11 There is an implementation of the local search function f (v) with evaluation
time O(LP( d; � )) , for each v 2 Vnf v� g with the Minkowski decomposition v = v1+ v2+ � � �+ vk .
Proof. The implementation of f essentially depends on how we de�ne the canonical
vector of the normal coneN (v; P). Like in the adjacency oracle implementation, we use
an LP formulation. Since the set of directionsej (v ; i ) for valid ( j; i ) 2 � include all edge
directions at v, the normal coneN (v; P) is the set of solutions� to the system

ej (vj ; i )T � � 0 for all valid (j; i ) 2 � :

Since we need an interior point of the cone, we formulate the followingLP:

max � 0

subject to
ej (vj ; i )T � + � 0 � 0 for all valid (j; i ) 2 �

� 0 � K:

(12.7)
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HereK is any positive constant. Sincev is a vertex ofP, this LP has an optimal solution. We
still need to de�ne a unique optimal solution. For this, we use a very pragmatic de�nition: �x
one deterministic algorithm and de�ne the canonical vector as the unique solution returned
by the algorithm. Since the number of variables isd + 1 and the number of inequalities is
at most � + 1, the assumptions on LP implies the time complexityO(LP( d; � )) to compute
the canonical vector. Note that for practical purposes, we should probably add bounding
inequalities for� to the LP (12.7) such as� 1 � � i � 1 for all i to make sure that the optimal
solution stays in a reasonable range. This does not change the complexity.

An execution of f requires to compute the canonical vectorsc and c� . Once they are
computed, the remaining part is to determine the �rst bounding hyperplane of the normal
coneN (v; P) hit by the oriented line t(� ) := c+ � (c� � c) (as � increases from 0 to 1). This
amounts to solving at most� one-variable equations, and is dominated by the canonical
vector computation.

In Figure 12.4, we present the resulting reverse search algorithm,where we assume that
the � index pairs (j; i ) in � are ordered as (1; 1) < (1; 2) < � � � < (1; � 1) < (2; 1) < � � � <
(k; � k).

procedure MinkowskiAddition(Adj ,(� 1; : : : ; � k), v� ,f );
v := v� ; (j; i ) := (1 ; 0); (* ( j; i ): neighbor counter *)
output v;
repeat

while (j; i ) < (k; � k) do
increment (j; i ) by one;

(r1) next := Adj (v; (j; i ));
if next 6= null then

(r2) if f (next) = v then (* reverse traverse *)
v := next;(j; i ) := (1 ; 0);
output v

endif
endif

endwhile ;
if v 6= v� then (* forward traverse *)

(f1) u := v; v := f (v);
(f2) restore (j; i ) such that Adj (v; (j; i )) = u

endif
until v = v� and (j; i ) = ( k; � k).

Figure 12.4: Reverse Search Algorithm for Minkowski Sum

Finally, we are ready to prove the main theorem, Theorem 12.9.

Proof. We use the general complexity result, Corollary 9.3, saying the time complexity
of the reverse search in Figure 12.4 isO(� (t(Adj) + t(f )) jV j). By Lemma 12.10 and Lemma
12.11, both t(Adj) and t(f ) can be replaced by LP(d; � ). Since f 0(P) = jV j, the claimed
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time complexity follows. The space complexity is dominated by those ofthe functions f and
Adj which are clearly linear in the input size.
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13 Problem Reductions in Polyhedral Computation

In this section, we look at some basic problems in polyhedral computation. Just like in
combinatorial optimization, it is quite hard to distinguish hard problems (typically NP-hard
problems) from easy problems. Here there are two sorts of easy problems. The �rst group
consists of decision problems that are polynomially solvable. The second group consists of
enumeration problems that may require output whose size is exponential in the input size,
but are output-polynomially solvable.

We shall present some hard decision problems in Section 13.1, and discuss some hard
enumeration problems in Section 13.2.

13.1 Hard Decision Problems in Polyhedral Computation

We start with two decision problems in polyhedral computation that are related to linear
programming but are known to be hard.

For A 2 Qm� d and b2 Qm , let PH (A; b) be the H-polyhedron

PH (A; b) := f x 2 Rd : Ax � bg; (13.1)

and let A (A; b) be the associated arrangement of hyperplanes:

A (A; b) := f h1; : : : ; hm g; (13.2)

hi := f x 2 Rd : A i x � bi g: (13.3)

Problem 13.1 Optimal Vertex of a Polyhedron (OVP)

� Input: A 2 Qm� d, b2 Qm , c 2 Qd and K 2 Q.

� Question: Does there exists a vertexv of PH (A; b) with cT v � K ?

Problem 13.2 K -Vertex of a Polyhedron (KVP

� Input: A 2 Qm� d, b2 Qm , c 2 Qd and K 2 Q.

� Question: Does there exists a vertexv of PH (A; b) with cT v = K ?

Theorem 13.3 ([26]) The decision problems OVP and KVP are both NP-complete.
Proof. It is clear that both problems are in the class NP. The proofs of the NP-
completeness will be obtained by a polynomial time transformation from the following prob-
lem, known to be NP-complete in the strong sense [29]:

Problem 13.4 Directed Hamiltonian Path (DHP)

� Input: A directed graph G = ( V; A) and two distinct vertices s, t 2 V .

� Question: DoesG contain a directed Hamiltonian path froms to t ?
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Let G = ( V; A) be a directed graph ands 6= t 2 V. Associate a variablex ij with each
arc (i; j ) 2 A. Let P(G) be the polytope given by:

X

j j(i;j )2 A

x ij �
X

j j(j;i )2 A

x j i = 0; for eachi 2 V � f s; tg; (13.4)

X

j j(s;j )2 A

xsj �
X

j j(j;s )2 A

x js = 1; (13.5)

X

j j(t;j )2 A

xtj �
X

j j(j;t )2 A

x jt = � 1; (13.6)

x ij � 0; for each (i; j ) 2 A: (13.7)

The matrix of the coe�cients of these inequalities is totally unimodular([43], Proposition
2.6, p. 542) implying that P(G) is integral. It follows that an extreme point x of P(G) is
the characteristic vector of a directed path joinings to t in G and, possibly, a set of circuits.
If a circuit C exists, thenx is a convex combination of the two points obtained by adding
or subtracting small � > 0 on all the arcs of the circuit, a contradiction. Hencex is the
characteristic vector of a simple directed path joinings to t. One verify easily that all such
paths are extreme points ofP(G), proving that the extreme points ofP(G) are exactly the
characteristic vectors of the simple directed paths joinings to t in G. These two facts thus
imply that, for K = jV j � 1 and c = 1 (the vector of all 1's), both the OVP and the KVP
problems forP(G) are NP-complete in the strong sense. This completes the proof.

There are similar complexity results for arrangements of hyperplanes.

Problem 13.5 Optimal Vertex of an Arrangement (OVA)

� Input: A 2 Qm� d, b2 Qm , c 2 Qd and K 2 Q.

� Question: Does there exists a vertexv of A (A; b) with cT v � K ?

Problem 13.6 Optimal Vertex of an Arrangement (KVA)

� Input: A 2 Qm� d, b2 Qm , c 2 Qd and K 2 Q.

� Question: Does there exists a vertexv of A (A; b) with cT v = K ?

Theorem 13.7 ([26]) The decision problems OVA and KVA are both NP-complete.
Proof. Consider an instance of DHP and build a corresponding instance for OVA and
KVA as follows: To each arc (i; j ) 2 A, we associate a variablex ij . Let d := jAj, K := jV j� 1,
c = 1 and de�ne the arrangement generated by the following set of hyperplanes:
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H i := f x 2 Rdj
X

j j(i;j )2 A

x ij �
X

j j(j;i )2 A

x j i = 0g; for eachi 2 V � f s; tg; (13.8)

Hs := f x 2 Rdj
X

j j(s;j )2 A

xsj �
X

j j(j;s )2 A

x js = 1g; (13.9)

H t := f x 2 Rdj
X

j j(t;j )2 A

xtj �
X

j j(j;t )2 A

x jt = � 1g; (13.10)

H ij := f x 2 Rdj x ij = 0g; for each (i; j ) 2 A: (13.11)

First we observe that if DHP has a \yes" answer, so does the corresponding instance of
OVA and KVA, as the characteristic vector of any directed Hamiltonian path lies on thejV j
hyperplanesH i for i 2 V as well as on (jAj � (jV j � 1)) = jAj � j V j +1 of the hyperplanesH ij

for i 6= j 2 V. Note that the jV j hyperplanesH i for i 2 V are not linearly independent, but
any subset of (jV j � 1) of them are. Hence there are (jAj � j V j + 1) + ( jVj � 1) = jAj linearly
independent hyperplanes containing the characteristic vector ofany directed Hamiltonian
path joining s to t in G, implying that the latter is a vertex of the given arrangement.

Now suppose that KVA or OVA has a \yes" answer produced by a vertex v of the con-
structed instance. One can write thejAj equations de�ning the hyperplanes of the instance
as a system of the formAx = b. It is well known that the matrix [ A; b] is totally unimodular
(see [43] for example). Thus any vertex of the arrangement has only +1 ; � 1, or 0 coordinates,
as shown by Cramer's rule for solving a linear system.

Let S be a set ofn linearly independent hyperplanes of the given family whose intersection
is v. As the jV j hyperplanes inf H i ji 2 Vg are not linearly independent, the number of these
hyperplanes which are inS is at most (jV j � 1). Hence the number of non zero coordinates
of v is at most (jV j � 1). As c = 1 and cT v � K = ( jV j � 1), we have that exactly (jV j � 1)
coordinates ofv are (+1), all the others being (0)'s. Thusv is the characteristic vector of a
set P of (jV j � 1) arcs ofA. This also implies that KVA has a \yes" answer if and only if
OVA has a \yes" answer

If P is a directed Hamiltonian path inG joining s to t, then we are done. Otherwise,P
contains a directed path joinings to t in G and at least one directed cycleC. But consider
v0 2 Rn de�ned by

v0
ij =

�
0 if (i; j ) 2 C;
vij otherwise;

for each (i; j ) 2 A: (13.12)

This complete the proof.
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13.2 Hard Enumeration Problems in Polyhedral Computation

For matrices V 2 Qs� d and R 2 Qt � d, the V-polyhedron with representation pair (V; R) is
denoted byPV (V; R), i.e.,

PV (V; R) := f x : x = V � + R�; 1T � = 1; � � 0; � � 0g: (13.13)

The following decision problem is arguably the most important problem inpolyhedral
computation.

Problem 13.8 Polyhedral Veri�cation Problem (PVP)

� Input: A 2 Qm� d, b2 Qm , V 2 Qs� d and R 2 Qt � d.

� Question: IsPH (A; b) 6= PV (V; R) ?

It is not di�cult to prove that if PVP is in P, then there is an output-po lynomial algorithm
for the polyhedral representation conversion problem discussedin Section 9, see Polyhedral
Computation FAQ [23].

PVP is easily seen to be in NP, because if the polyhedra are not equal, there is a succinct
certi�cate for it, a point x in one of the polyhedra which is not in the other. Unfortunately,
the complexity of PVP is still open. The decision problem PVP was �rst posed by Lovasz,
see [49], and has been extensively studied by many researchers.

One of the most exciting progresses is the NP-completeness of a closely related problem,
due to Khachiyan et al. [35].

Problem 13.9 Vertex Enumeration for an Unbounded Polyhedro n (VEU)

� Input: A 2 Qm� d, b2 Qm and V 2 Qs� d.

� Question: Does the H-polyhedronPH (A; b) contain a vertex not in V?

Theorem 13.10 ([26]) The decision problems VEU is NP-complete.
Proof. (Outline) It is easily seen to be in NP, because if the answer is yes, then there is
at least one vertex not inV. The proof uses a reduction from the NP-complete problem:

Problem 13.11 Negative Circuit Enumeration (NCE)

� Input: A digraph G = ( V; E) with edge weightw : E ! Q, and a family S of negative
circuits of G.

� Question: DoesG contain a negative circuit not in the family S?

Here, anegative circuit is a directed circuit C � E whose total weight
P

e2 C is negative. It
is shown by Khachiyan et al. [35] that NCE is NP-complete from a reduction from SAT.

(This section is to be extended.)



IP (Fukuda) v.2015-02-14 93

14 Evolutions and Applications of Polyhedral Compu-
tation

Polyhedral Computation has been shaped and polished through actual demands from nu-
merous mathematicians, scientists, engineers and even social scientists. In this section, we
present the author's personal involvements in various external or internal projects which
have driven the advancement of polyhedral computation and software developments.

1987 { 1992: The First Stage. The �rst generation of codes for polyhedral representa-
tion conversion were written �rst for mathematicians to understand certain combina-
torial polyhedra, such ascut polytopes , cut cones, andtraveling salesman poly-
topes . It is extremely di�cult to determine the facet inequalities of these polyhedra
because typical associated combinatorial optimization problems are NP-hard. How-
ever, by computing the H-representation from a V-representation for small instances,
many new facet inequalities were discovered and used for �nding a stronger LP relax-
ation of NP-hard optimization problems. The �rst version of my implementation of
the double description algorithm described in Section 9.1 was releasedin January 1988
is calledpdd where p stands for the programming language Pascal. It helped theearly
stage of research on cut polytopes by Michel Deza and Monique Laurent, see [17, 18].

1993 { 1996: The Critical Second Stage. Then, a more computationally demanding
task was needed for research inmaterial science . Two physicists G. Ceder and
G.D. Garbulsky at MIT contacted both David Avis and myself in 1993, and asked
for our computational help in enumerating all extreme points of a highly degenerate
polytope in dimension 8 given by 729 inequalities. The vertices represent physically
stable states of a ternary (3 elements) alloy. David had a C-implementation named
rs (which was replaced bylrs later) of the reverse search algorithm given in Section
9.2 then, and I had a C-version namedcdd of the earlier codepdd . Both David and
myself devoted our e�ort to compute the vertices, and �nally it took us about a month
to compute the results. Our greatest excitement came when we veri�ed that the �nal
results computed by our implementations of two totally di�erent algorithms returned
exactly the same results. This successful computation lead to a paper by the four of
us [12].

About the same time, then a doctoral student Francisco Valero ofneuromuscular
systems laboratory at Stanford University contacted me. The application Valero
discovered then surprised me considerably. I did not imagine that one can �nd an
application of polyhedral computation in human bodies and muscles. He email in May
1994 describing his application reads

My application deals with �nger muscles having force limits (i.e., form
zero force to their maximum physiological force for each �nger muscle) which
de�nes a hypercube in a dimension equal to the number of muscles under
consideration. Other mechanical, functional or anatomical characteristics
produce further constrain equations (i.e., need the force of the �nger to be
zero in certain directions, �nger size/con�guration, etc.). The vertex enu-
meration technique helps me identify the limits of muscle force production
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under these constraints, which in turn maps into functional limits such as
maximum �nger forces, accelerations, etc, which are independentof muscle
force coordination. Coordination can be studied with standard linear pro-
gramming techniques. The limits of function, however, require the explicit
enumeration of the vertices of convex polyhedra inn-dimensional space.

Valero has been a strong advocate of computational geometry techniques applied to
biomedical and biomechanics �elds since then. A recent paper [36] shows theanal-
ysis of muscle redundancies using the vertex enumeration in polyhedra.

From the software development front, a new C++ version ofcdd , called cdd+ , was
released in April 1995 which has the capability of using both 
oating-point and rational
exact arithmetic using GMP [1].

1997 { 2007: Developments of Polyhedral Computation Librar ies. Further advance-
ments were made during this period for the development of software C-librariescddlib
and lrslib , based oncdd and lrs , respectively by Fukuda [22] and Avis [2]. Natu-
rally, these libraries have been integrated into other programs.

A versatile R-interface of cddlib was written by the statistician Charles Geyer of
University of Minnesota. It is available from

http://www.stat.umn.edu/~charlie/

A webpage of computingall Nash equilibria of bimatrix games usinglrslib written
by Rahul Savani became available at

http://banach.lse.ac.uk/form.html.

A Matlab toolbox for the study of control theory with an emphasis on parametric
optimization was written by a group of researchers at the system dynamics and control
group at ETH Zurich. It has an interface calledcddmex to cddlib and is available at

http://control.ee.ethz.ch/research/software.en.html

A Python interface PyPolyhedron to cddlib was written by Pearu Peterson. He
wrote in his email in 2007 \I am using it for analyzing multi-soliton interactions. In
terms of computational geometry, I just construct special polyhedron in (N + 1)-D
space, project it to N -D space, and then �nd its intersection with 2-D hyperplane,
which after projecting to 2-D space gives an interaction pattern of the N -soliton solu-
tion." It is available at http://cens.ioc.ee/projects/polyhedron/

Polymake is a platform to do polyhedral and algebraic computation mainly for
mathematicians whose two core engines arecddlib and lrslib . It is available at
http://www.polymake.org/doku.php

TOPCOM [45] is a package for computing Triangulations Of Point Con�gurations
and Oriented Matroids. It uses the LP code ofcddlib for the recognition of regular
triangulations.

Minksum [http://www.cs.dartmouth.edu/~weibel/minksum.php] is a program to com-
pute the V-representation (i.e. the set of vertices) of the Minkowski addition of several
convex polytopes given by their V-representation. It is an implementation in C++

http://www.stat.umn.edu/~{}charlie/
http://banach.lse.ac.uk/form.html
http://control.ee.ethz.ch/research/software.en.html
http://cens.ioc.ee/projects/polyhedron/
http://www.polymake.org/doku.php
http://www.cs.dartmouth.edu/~{}weibel/minksum.php
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language of the reverse search algorithm given in Section 12.2 whosetime complexity
is polynomially bounded by the sizes of input and output. It relies on the exact LP
solver of cddlib .

Gfan [33] is a program to list all reducedGr•obner bases of a general polynomial
ideal given by a set of generating polynomials in -variables. It is an implementation in
C++ language of the reverse search algorithm [25]. It relies on the exact LP solver of
cddlib .

2004 { 2011: Expanding Application Fields. An application of Minkowski sum of
polytopes presented in Section 12 is given in a doctoral thesis of J.P. Petit [44]in
2004, which iscomputer aided tolerancing in design and manufacturing using
a mathematical model with convex polytopes in dimension 6. The dimension is simply
3 + 3 where the �rst 3 is the dimension of the space and the latter is the freedom of
movement in 3-space.

A polyhedral model was introduced in a doctoral research at Queen's University Belfast
guided by Cecil Armstrong onaircraft stress load evaluation and optimization .
The essential problem is to detect the most critical parts of aircrafts against a set of
many likely stresses, which is reduced to the redundancy removal inlinear inequality
systems, the theme of Section 8.2.

To analyze thee�ects of United Nations peacekeeping operations , the danger
of using the high dimensional analysis is pointed out in a paper by political scientists
in [46], after a few researchers in computational geometry includingmyself presented
counter-intuitive facts in higher dimensional spaces. In particular, one serious problem
of estimating the e�ect of a future operation, a relatively small setof past instances
represented by high dimensional points cannot be a reliable guidance, due to the fact
that a new point will most likely be (far) outside of the convex hull of the past
data points , and thus a wild extrapolation occurs at a high probability.

Future. From my personal involvements in polyhedral computation during the past 24
years, once reliable and e�cient codes of polyhedral computation become available,
new users might show up from any �eld of science, engineering, humanities and even
arts. Thus, the main purpose of writing this book is to present the fundamental theory
of polyhedra and the basic computational problems associated polyhedra with most
e�cient algorithmic techniques. My belief is that interesting applications should follow
once researchers have easy access to the theory and computational codes. After all,
convex polyhedra appear almost everywhere, implicitly or explicitly.
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15 Literatures and Software

Course materials will be distributed as pdf �les from our course webpage.
For the theory of linear programming, recommended sources are [47, 14, 24]. Some of the

excellent books on combinatorial optimization are [16, 31, 48]. Thereare excellent books on
convex polyhedra, see [39, 32, 51]. For good discussions on algorithmic and combinatorial
aspects of polyhedra, see [41, 37, 34]. The standard text on oriented matroids is [9], and an
excellent introduction is included in the dissertation [21] which is available online.

We use some of the freely available software packages such aslrslib [2] andcddlib [22]
for polyhedral representation conversion.
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