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1 Overview

Polyhedral computation deals with various computational problemassociated with convex
polyhedra in general dimension. Typical problems include the repesgation conversion
problem (between halfspace and generator representationshetredundancy removal from
representations, the construction of hyperplane arrangemenand zonotopes, the Minkowski
addition of convex polytopes, etc.

In this lecture, we study basic and advanced techniques for polydral computation in
general dimension. We review some classical results on convexityd aonvex polyhedra
such as polyhedral duality, Euler's relation, shellability, McMullen's uppr bound theorem,
the Minkowski-Weyl theorem, face counting formulas for arrangeents. Our main goal is
to investigate fundamental problems in polyhedral computation &m both the complexity
theory and the viewpoint of algorithmic design. Optimization methodsin particular, linear
programming algorithms, will be used as essential building blocks ofvashced algorithms
in polyhedral computation. Various research problems, both theetical and algorithmic,
in polyhedral computation will be presented. The lecture consist dhe following sections
which are ordered in a way that the reader can follow naturally fromap to bottom.

Lectures

1. Introduction to Polyhedral Computation
. Integers, Linear Equations and Complexity
. Linear Inequalities, Convexity and Polyhedra

. Integer Hull and Complexity

2

3

4

5. Duality of Polyhedra
6. Line Shellings and Euler's Relation

7. McMullen's Upper Bound Theorem

8. Basic Computations with Polyhedra (Redundancy, Linearity and BDnension)
9. Polyhedral Representation Conversion

10. Hyperplane Arrangements and Point Con gurations

11. Computing with Arrangements and Zonotopes

12. Minkowski Additions of Polytopes

13. Problem Reductions in Polyhedral Computation

14. * Voronoi Diagarams and Delaunay Triangulations

15. * Diophantine Approximation and Lattice Reduction
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16. * Counting Lattice Points in Polyhedra
17. * Combinatorial Framework for Polyhedral Computation
18. Evolutions and Applications of Polyhedral Computation

19. Literatures and Software

(* planned.)

Case Studies

Matching Polytopes, Zonotopes and Hyperplane Arrangements,irBatrix Games, Order
Polytopes, Cyclic Polytopes, etc. Note that this part is not yet intgrated into the main text.
See the supplementary notes, \Case Study on Polytopes (for Pbdral Computation).”
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2 Integers, Linear Equations and Complexity

2.1 Sizes of Rational Numbers

Whenever we evaluate the complexity of an algorithm, we use tinary encoding length

to solve the worst-case problem instance of the same input size. &lsn order to claim a
polynomial complexity , itis not enough that the number of required arithmetic operations
is bounded by a polynomial function in the input size, but also, the lagst size of numbers
generated by the algorithm must be bounded by a polynomial functioin the input size.
Here we formally de ne the sizes of a rational number, a rational geor and a rational
matrix.

Let r = p=gbe a rational number with canonical (i.e. relatively prime) represeation
with p2 Z and g2 N. We de ne the binary encoding size of r as

sizef) :=1+ dog,(jpj + 1) e+ dog,(q+ 1) e (2.2)

The binary encoding size of a rational vectorv 2 Q" and that of a rational matrix A 2 Q™ "
are de ned by

X
size{) .= n+ size(;); (2.2)
j=1
XX
size@A) := mn + size@; ): (2.3)
i=1 j=1

Exercise 2.1 For any two rational numbersr and s, show that

sizef s) sizef) +size(s);
sizef + s) 2(sizef) + size(s)):

Can one replace the constant 2 by 1 in the second inequality?

2.2 Linear Equations and Gaussian Elimination

Theorem 2.1 Let A be a rational square matrix. Then the size of its determinant is poly-
nomially bounded, and more specifically, size(detd)) < 2size@).

Proof. Let p=gbe the canonical representation of def), let p; =g; denote that of each
entry a; of A, and let denote sized).

First, we observe
Y
q g <2 5 (2.4)

i5j
where the last inequality can be veri ed by taking log of the both sides. By the de nition
of determinant, we have

Y
j det(A)] (pjj+1): (2.5)
ihj
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Combining (Z.4) and [2.5),

Y
jpj = jdet(A)jq (pmi+1)a <2 % (2.6)
i
where the last inequality again is easily veri able by taking log of both sides. Then it
follows from (Z.3) and [Z.6) that

size(detd)) =1+ dog,(jpj + 1) e+ dog,(g+1)e 1+( 1) +( 1)< 2: (2.7)
[

Corollary 2.2 Let A be a rational square matrix. Then the size of its inverse is polynomially
bounded by its size sizeA).

Corollary 2.3 If Ax = b, a system of rational linear equations, has a solution, it has one
polynomially bounded by the sizes of [A; b].

Here is a theorem due to Jack Edmonds (1967).

Theorem 2.4 Let Ax = b be a system of rational linear equations. Then, there is a
polynomial-time algorithm (based on the Gaussian or the Gauss-Jordan elimination) to find
either a solution x or a certificate of infeasibility, namely, suchthat TA=0and "h6&O0.

Proof. Let be the size of the matrix [ A; b]. We need to show that the size of any number
appearing in the Gaussian elimination is polynomially bounded by the siz&ioput. Here we
use the Gauss-Jordan elimination without normalization. Le® be the matrix after applying

it for k times, that is, we have (after applying possible row and column perrations),

1 k S
1[a,0 O
1o .0
R= k| 0 Oax (2.8)
0 0
r| o 0 B
0 0

Since we do not apply any normalization to nonzero diagonals, we ha&e= a; 6 0 for all
i=1;:::;k. Let K = f1;:::;kg. We need to evaluate the sizes of all entriegs"with s > k.
For r >k , one can easily see

_ det(Ry [f rgK[f sg) _ det(Ax(r rgkf sg) | (2.9)
det(Rex ) det(Axk ) '

Qs

where the last equation is valid because the elementary row operatiowithout normalization
does not change the value of the determinant of any submatrix & containing K as row
indices. It follows that size@}s) < 4 . A similar argument yields size(&s) < 5 when r k.
The same bounds for the size of the converted right hand sifle follow exactly the same
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and x; =0 for j >k , at the last stepk of the algorithm. Clearly, the size of this solution is

polynomially bounded. When the system has no solution, there is a tily zero row &, and
ﬁ, 6 0. It is left for the reader to nd an e cient way to nd a succinct ¢ erti cate . [ |

Exercise 2.2 Assuming that A, b are integer, revise the Gauss-Jordan algorithm so that it
preserves the integrality of intermediate matrices and is still polymoial. (Hint: each row
can be scaled properly.)

2.3 Computing the GCD

For given two positive integersa and b, the following iterative procedure nds the greatest
common divisor (GCD):

procedure EuclideanAlgorithm(a, b);
begin
if a<bthen swapa andb;
while b6 0 do
begin
a=—abalr b
swapa and b,
end;
output a;
end.

Note that the algorithm works not only for integers but rationala and b.
Exercise 2.3 Apply the algorithm to a =212 and b= 288.

Exercise 2.4 Explain why it is a correct algorithm for GCD. Analyze the complexity ofthe
algorithm in terms of the sizes of inputsa and b. How can one extend the algorithm to work
with k positive integers?

This algorithm does a little more than computing the GCD. By looking at he matrix
operations associated with this, we will see that the algorithm doesuch more. Let's look
at the two operations the algorithm uses in terms of matrices:

01

a, b 10° b; a (2.10)
: 1 0 _ _ Ch-
a, b basls: 1 - a ba=lt b; b: (2.11)

It is important to note that the two elementary transformation matrices

1 0

01 . :
10 (Swapping), baztke: 1 (Remainder) (2.12)
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are integer matrices and have determinant equal to +1 or 1. This means that the trans-
formations preserve the existence of an integer solution to thdlfaing linear equation:

a, b ); =c (i.e.,,ax+ by=0): (2.13)

Let T 2 Z? 2 be the product of all transformation matrices occurred during t& Euclidean
algorithm applied to a and b. This means thatjdetTj =1 and

a, bT= a% 0; (2.14)

where a’is the output of the Euclidean algorithm and thus GCD&; b).
Now, we see how the algorithm nds the general solution to the lineaiophantine equa-
tion:
X 2 i e , X _
nd y 2 Z¢ satisfying a; b y - C: (2.15)
Once the transformation matrix T is computed, the rest is rather straightforward. Sinc&
is integral and has determinant 1 or 1, the following equivalence follows.

0 0
9 ZZZ:a;bizc, 9§OZZZ:a;bT§O:c

=c ,h ajc (adividesc)i:

Finally, when ajc, let x°:= c=& and y°be any integer. Then,
X x° c=&

=T =T
y0

2.16
y O (2.16)

with y°2 Z is the general solution to the diophantine equation (2.15).

2.4 Computing the Hermite Normal Form

By extending the Euclidean algorithm (in matrix form) to a system of lirear equations in
several integer variables, we obtain a procedure to solve the linetiophantine problem:

nd x 2 Z" satisfying Ax = b; (2.17)

whereA 2 Z™ " and b2 Z™ are given. We assume thaf is full row rank. (Otherwise,
one can either reduce the problem to satisfy this condition or shovdt there is nox 2 R"
satisfying Ax = b. How?)

Note that a seemingly more general problem of rational inputd and b can be easily
scaled to an equivalent problem with integer inputs.

Theorem 2.5 There is a finite algorithm to find an n  n integer matrix T with jdetTj =1
such that AT is of form [B 0], where B =[] isan m m nonnegative nonsingular lower-
triangular integer matrix with b > Oand by <b; foralli=1;:::;;mandj =1;:::;i 1
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This matrix [B 0] is known as theHermite normal form, and it will be shown that it is
unique.

Corollary 2.6 The linear diophantine problem (2.17) has no solution x if and only if there
is z2 QM such that z" A is integer and z" b is fractional.

Proof. The \if" part is trivial. To prove the \only if" part, we assume that [x12 Z" :
AXx = b Let T be the integer matrix given by Theoreni:2]5. BecaugaletTj = 1, we have
the following equivalence:

hx2 Z":Ax=h,h xX32Z2":AT x°=h,h X2 z":[B 0]x°= b
, B !bis not integer

SinceB !bis not integer, there is a row vectoz' of B ! such that z"bis fractional. Since
B AT =[I 0], we know thatB A =[l 0]T *anditis an integer matrix asjdetTj = 1.
This implies that z" A is integer. This completes the proof. | |

As for the single diophantine equation, one can write the generallgtion to the linear
diophantine problem [Z1V).

Corollary 2.7 Let A2 Q™ " be a matrix of full row rank, b2 Q™, and AT =[B 0] be an
Hermite normal form of A. Then the following statements hold.

(@) The linear diophantine problem (2.17) has a solution if and only if B b is integer.
(b) 1If B bis integer, then the general solution x to (Z.17) can be written as

B b

x=T °_"; (2.18)

forany z2 zZ" ™.

Now, we are going to prove the main theorem, Theorem 2.5.

Proof. (of Theorem[Z5). Extending the operations we used in(Z2]12), ourgof of
Theorem[Z5 involves three elementary matrix (column) operationsnaA:

(c-0) multiplying a column of A by 1;
(c-1) swapping the positions of two columns oA;

(c-2) adding an integer multiple of a column to another column oA.

Both (c-1) and (c-2) were already used and (c-0) is merely to deaith negative entries which
are allowed inA. Each operation can be written in formA T, whereT is aunimodular matrix,
I.e., an integer matrix of determinant equal to 1 or 1.

The algorithm operates on the rst row, the second and to the lastow. We may assume
that we have already transformed the rstk( 0) rows properly, namely, we have a sequence
of matrices Ty, T,,..., Ts such that T = T;T, Ts and

B° 0

Ac=AT = G

(2.19)
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whereBCis ak k matrix which is already in the form required for the nal B, namely, it
is a nonnegative nonsigular lower-triangular integer matrix withf > 0 and tﬁ < b? for all
i=1;:::;kandj =1;:::;i 1. Now we process th&th row of Ay, and essentially the rst
row of A% The rst row of A°containsn k integers and the rest is written byA%

80 (2.20)

Now we apply the Euclidean algorithm to nd the GCD, say , of then Kk integers. For
this, we rst use (c-0) operations to make the numbers all nonnagive. Then remaining
operations are straightforward with (c-1) and (c-2) to converthe rstrowto[ ; 0;0;:::;0].
This in the form of the whole matrix Ay looks like (for someT9,

2 3
BO 0
A T0=4 0 0,0;::::09: (2.21)
C AOOO

Note that is strictly positive because of the full row rank assumption. Finally, & can
reduce the entries in the rst row ofC by adding some integer multiples of in the (k+1)st
column (for someT® as

2 3
BO 0
A TOTO=4¢0;::::&0  ; 0,0;:::;05; (2.22)
COO AOOO
so that all entriesc};;:::; &, are smaller than . Now we have made the principalK + 1)
(k +1) matrix in the form of the nal B. This completes the proof. ||

While the algorithm is nite, it is not clear how good this is. It has been oberved that
the largest size of numbers appearing during the course of the aitfum grows rapidly. There
are ways to make the procedure polynomial. We will discuss this issugela

Example 2.1 The following small example is simple enough to calculate by hand.

8 10 4
A= 4 o g
2 0 o0
AL= 14 20 36 °
200
A2=[BOI= 5 4 g

The transformation matrix T with A, = AT is

2
6

T=47 2 105:
5
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Example 2.2 The following small example (randomly generated) shows how numksegrow
rapidly. Of course, this example is nhot meant to be computed by hand

2 100 32 140 168 1473
Azg 68 16 125 168 72
12 28 50 147 1335’

60 64 65 28 28 2

1 0 0 0 0
g 523 944 159 320 1976

At=2 115 604 54 151 388"

) 976 2080 565 156 3652

1 0 0 0 0

A _g 0 1 0 0 04
2= 1489619 2848 495 5739 172295’

) 37305137 71331 6180 143636 29988

1 0 0 0 0

B 0 1 0 0 oé_

A3‘§ 1 2 3 0 05

299296004657 5732624931 602688 309680 1400700

1 0 0 00
0O 1 0 00
A“z[Bo]:g 1 2 3 0 oé

43 129 12 140 O

The transformation matrix T with A, = AT is

807814365429333 1545542680854 1626716396 377867 1101248
1448925874428057 2772142804282 2917738997 677754 197522
731120268289411 1398808473625 1472275536 341992 99668& :
365381147997122 699061793372 735777339 170912 49810
248937455097979 476277073276 501291704 1164339360

T =

Observation 2.8 In the example above, the numbers appearing during the course of the al-
gorithm seem to grow. This is a fact commonly observed. Yet, it is not known if our algorithm
is exponential. There are ways to modify the algorithm so that it runs in polynomial-time.

Exercise 2.5 Write a computer program to compute a Hermite normal form of anynteger
matrix A of full row rank. For this, one needs to use an environment where iiite precision
integer arithmetic is supported, e.g., C/C++ with GNU gmp, Mathematica, Maple, and
Sage.
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2.5 Lattices and the Hermite Normal Form

There is a close relationship between the Hermite normal form of a tna A 2 Q™ " and
the lattice generated by (the columns of A. Recall that the lattice L (A) generated byA is
de ned by

L(A)=fy:y=Ax;x 2 Z"g: (2.23)

The lattice L (A) is full dimensional if it spans the whole spac&k™, or equivalently, A is full
row rank.

Lemma 2.9 Let A be rational matrix of full row rank with Hermite normal form [B 0]
Then, L(A) = L([B 0]).

Proof.  This follows directly from the fact that A T = [B 0] for some unimodular matrix
T. |

Theorem 2.10 Let A and A° be rational matrices of full row rank with Hermite normal
forms [B 0] and [B°0], respectively. Then the matrices A and A° generate the same lattice
(i.e. L(A)= L(A9Y) if and only if B = B®
Proof.  Clearly, the su ciency is clear: if B = B% L(A) = L(A9.

Assume thatL := L(A) = L(AY. Then, by LemmalZ9,L = L(B) = L(B9. Now we

and B® are in L with the property (*) that the rst ( k 1) components are all zero and
the kth component is positive. Becaus® is in Hermite normal form, it follows that B i is
a vector in L satisfying (*) with its kth component being smallest possible. Since the same

normal form, B  is a lexicographically smallest vector of nonnegative componentsiséting
(*), and so isBY. Such a vector is unique, and thug , = B, |

Corollary 2.11 Every rational matrix of full row rank has a unique Hermite normal form.

A basis of a full dimensional lattice L(A) is a nonsingular matrixB such that L(A) =
L(B). A direct consequence of Theoremn 2.5 is

Corollary 2.12 Every rational matrix of full row rank has a basis.

Exercise 2.6 Let A be a rational matrix of full row rank, let B be a bases of.(A) and
let B® be a nonsingularn  n matrix whose column vectors are points i (A). Show the
following statements are valid:

(a) jdet(B)j j det(B9;.
(b) BPlis a basis ofL(A) if and only if jdet(B)j = jdet(B9j.

Using the fact (a) above, we show that the size of the Hermite noahform is small.
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Theorem 2.13 The size of the Hermite normal form of a rational matrix A of full row rank
is polynomially bounded by size@).

Proof. Let [B O] be the Hermite normal form ofA, and let B®be any basis (i.e. nonsingu-
lar m m submatrix) of A (which is not necessarily a basis @f(A)). First of all, det(B) > 0.
By Exercise[2.6 (a), we have deB) j det(BYj. By Theorem[Z1, this inequality implies
that the size of det®) is polynomially bounded by sizef).

SinceB is lower triangular, det(B) is the product of diagonal entriedy;, (i = 1;:::;;n). It
follows that the size of each entryy; is less than the size of deR), and thus is polynomially
bounded by sizef). SinceB is in Hermite normal form, each nondiagonal entry; is less
than or equal toh; and has the same property. | |

The theorem above suggests that the Hermite Normal Form mightebcomputable in
polynomial time. In fact, there are methods to control the largeassize of numbers generated
during the course of the algorithm given in the previous section.

One such algorithm is as follows. First of all, a given matriA of full row rank, is enlarged
to

M 0
R=9al0 -~ 0o&: (2.24)

where M is set to be the positive integelj det(B9j for an arbitrarily chosen basisB° of A.
The rst observation is that this new matrix generates the same ldice asA.

Exercise 2.7 Show thatL(/*?): L(A).

Thus, computing the Hermite normal form ofR is equivalent to that of A. Now, since we
have the added columns, it is possible to reduce the entries appearin the rst n columns
by adding proper multiples of the lastm columns, so that all entries are nonnegative and
at most M. This reduction should be applied before the Euclidean algorithm is alpgd to
each row. Since siz&() is polynomially bounded by sizef), one can control the number
of arithmetic operations and the size of numbers appearing in the plpcation of Euclidean
algorithm applied to each row ofh.

The sources of the ideas and more detailed discussion can be foundimijver's book
[47, Section 5.3]. One important consequence of Theorem 2.13 , dary and Theorem
2.4 is the following.

Corollary 2.14  For any rational matrix A of full row rank, there is a transformation matrix
T such that AT is the Hermite normal form of A and size(T') is polynomially bounded by the
size of A. Furthermore, such a matrix can be computed in polynomial time.
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2.6 Dual Lattices

For a lattice L in R™, its dual lattice L is de ned by
L =fy2Q™:y'z22Z;822 Lg: (2.25)
If L is generated by a matrixA,
L =(L(A) =fy2QM:y'A2 Z"g: (2.26)

In terms of the Hermite normal form B 0] of A (assuming A is full row rank), the dual
lattice is generated by the transpose (and the rows) & 1, that is,

L =L(B H"): (2.27)

Why is it so? To see that, set.°= L((B 1)") and we will showL®= L . SinceB B = |
and L is generated by (the columns of B, each row ofB ! has an integer inner product
with any vector in L. This showsL® L . For the converse, take any vectoy in L . Let
s’ = y"B. By de nition of L , s2 Z™. Observing thaty”™ = sTB 1, y is an integer linear
combination of the rows ofB !. This provesL?® L and completes the proof.

Example 2.3 Figure[21 left depicts the lattice generated byA = 11 ; . The Hermite
1 0

normal form isB = ; g and its inverse isB ! = 2 1 - While the primal lattice L(A)
3 3

is generated by the columns dB, the dual lattice (L(A)) is generated by the rows oB 1.

Figure[2.1 right depicts the dual lattices (partially) on the same scale

15 ° 15
°
°
°
10 . 10
°
°
° °
°
. 5 . 5
° °
° °
° °
_ ° ° ® 09 0% 0°,0%,0%,0% 0,
-4 7 -3 e 2 4 -4 S et e e e e o0 e ,
° °
° °
° °
e -5 ° 5
°
° °
°
°
° -10 -10
°
°
°
° -15 -15

Figure 2.1: Lattice L(A) and its Dual Lattice.
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3 Linear Inequalities, Convexity and Polyhedra

3.1 Systems of Linear Inequalities

Consider a system of rational linear inequalities
AX b (3.1)

whereA 2 Q™ 9andb2 QM are given. The set
P=P(Ab:=fx2R%: Ax Ig (3.2)

of solutions to the system is a subset d®9, known as aconvex polyhedron. It is in fact a
convex set: a subseC of RY is said to beconvex if the line segment {I;v] := fx : x =
u+(@1 )v; 0 1g between any two pointsu and v in C is entirely contained inC.
A bounded convex polyhedron is called eonvex polytope.

A point x is called anextreme point of a convex setC if x 2 C and x is not on the line
segment between any two pointsl, v in C di erent from x. Unlike general convex sets, a
convex polyhedronP contains only a nite number of extreme points. This will be shown
in a more general form in Theorem_3.14.

Below, the rst two are centrally symmetric polytopes inR3, and the third one is ran-
domly generated. One can interpret the third one as a bounded pblgdron (i.e. polytope)
contained in the nonnegative orthant or as an unbounded polyheait having only its non-
negative orthant part drawn.

)

3.2 The Fourier-Motzkin Elimination

Consider a system[(3]1) of linear inequalities inn variables. Solving such a system means
either to nd a rational vector x satisfying the system or to detect inconsistency of the
system. The latter can be proven by a certi cate given by the wellthown theorem of Gale:

Theorem 3.1 (Gale's Theorem) For any A 2 R™ 9 and b 2 R™, exactly one of the
following statements holds:

(a) there exists x 2 RY such that Ax b

(b) there exists z2 R™ suchthatz 0,z'TA=0andz'b<0.



IP (Fukuda) v.2015-02-14 14

It is easy to see that both statements cannot hold simultaneouslysat would mean 0
is less than or equal to some (strictly) negative number. Thus theontrivial part of the
theorem is that one of (a) and (b) is always valid. There are severabnstructive proofs of
the theorem.

Here we present an arguably simplest constructive proof due to Uiter and Motzkin.
The main idea is to transform the system[(3]1) to an equivalent syste of the same form
with one less variables.

First we rewrite the system [[3.1) by looking at the coe cientsay's for the last variable
Xg4. Let us de ne a partition of row indices into the three sets:

|* :=fijag>0g;, 1 =fijag<Ogandl®:=fijaq=0g:
The system [3.1) can be rewritten by solving each inequality with reggt to Xq:
xa fi(x9 8i2l*
g(x)  Xqg 8j 2 |
he(x9 0 8k21°;
where x° is the vector x with the last component eliminated, i.e.x°= (x1;:::;%q 1)" and

each functionsf;, g and hy denote some a ne functions ind 1 variables.
It is not di cult to show (Exercise 3.1) that the system (B.I) is equivdent to the new
system ind 1 variables:

g (x) fi(x9 8(i;j)21" |
he(x9 0 8k 21°:
This system can thus be written as
A%® p? (3.3)
Exercise 3.1 Prove the equivalenceAx b, A%° I

No reason to stop here. Let's continue to eliminate the variabley ;, then x4 » and so
forth until all variables are eliminated. This generates a sequencé equivalent systems of
linear inequalities:

AOxO® {9 (This is the original systemAx b))
m

ADXxD D (This is A%° B above.)
m

ADx@ {42
m

m
ADy@ o).

whereAKx®) k) denotes thekth system where the lask variables have been eliminated.
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Exercise 3.2 Show that the elimination step as a matrix transformation. More preisely,
there is a matrix T (depending onA) such that the systemA%°® B is the same system as
TAx  Tbup to positive scaling. Note that the last column of the productl A is totally
zero and thusT Ax does not involve the last variablexy.

By the exercise above, the last systetA@x@ g9 can be now written asT () Ax
T@h, Of course, the left hand sidél (Y Ax is a vector of zero's.

Exercise 3.3 Prove Theorem3.1 by using the matrixT (.

Exercise 3.4 Prove the following forms of alternative theorem using Gale's Theare Be-
low, the statement is read as \exactly one of the two statements) or (b) holds."

The Farkas Lemma Gordan's Theorem
(@ 9x:Ax =Dbandx O0; (@) 9x:Ax =0andx LTl
(b) 92:z"A Oandz'b<O. (b) 9z:z"A> 0.

Exercise 3.5 Let V be a vector subspace d&%, let V? be its orthogonal dual space, and let
g be any xed index in [d]. Prove the following alternative theorem using the Farkas Lemma.
Below, the statement is read as \exactly one of the two statemest(a) or (b) holds."

Selfdual Alternative Theorem
(@ 9x2V:x Oandxq> 0;
(b) 9y2V?:y Oandyy> 0.

3.3 LP Duality

For a givenA 2 R™ 9 b2 R™, ¢ 2 RY, the linear programming problem (in canonical form)
IS

P
(P):  max c'x 5 g X
subjectto Ax b Lpayx o bi8i=1;nm
x 0. Xj 0,8 =1;:::;d.

We often abbreviate a linear programming problem as abP. A vector x satisfying all the
constraints Ax bandx 0 is called afeasible solution. An optimal solution is a feasible
solution that attains the largest objective value. In the case of mimization problem, an
optimal solution attains the smallest value.

The set of feasible solution$x : Ax  b;x 0Ogis called thefeasible region. An LP is
calledfeasible if the feasible region is not empty. An LP is calledinbounded if the objective
function c' x is not bounded above (below for the minimization case) over the félale region.

Geometrically, the feasible region is aonvex polyhedron.
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In general, maximizing or minimizing a linear function subject to a syste of linear inequality
constraints in d variables can be reduced to an optimization in the form above. Alsopte
that no strict inequality constraint such asx; > 0 is allowed in linear programming.

There are two fundamental theorems, the weak duality theoremnd the strong duality
theorem. To state these theorems, we need to de ne tlieial problem

(D): min b'y
subjectto ATy ¢
y O

which is a linear programming problem itself. The original problem (P) isadled the primal
problem when we need to distinguish it from the dual problem.

Theorem 3.2 (LP Weak Duality Theorem) For any feasible solution x for the primal
problem (P) and for any feasible solution y for the dual problem (D), c'x Db"y.

Theorem 3.3 (LP Strong Duality Theorem) If both the primal problem (P) and the
dual problem (D) are feasible, there exist a dual pair (x ;y ) of feasible solutions such that
c'x = b'y . (By the previous theorem, they are both optimal.)

The rst theorem is very easy to prove. Thus it may not be appropate to call it a
theorem, but since it is widely accepted to be so called. Let's prove it.
Proof.  (of the Weak Duality Theorem, Theoreni-3.R2) Leix andy be a dual pair of feasible
solutions. Then,

c'x  (ATy)"x (becauseAy candx 0)
= yTAX
y'b (becauseAx bandy 0)
=by:
This completes the proof. |

Now, we are ready to prove the second theorem which is much harde prove.
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Proof. (of the Strong Duality Theorem, Theorem[3.8) Assume that both tb primal
problem (P) and the dual problem (D) are feasible. We have to shovhat

o(x;y) :Ax b;x O
ATy cy O (3.4)
c'x=bly:

Now, we verify the statement [(3.4) is always valid under the assumph.

9(x;y): Ax b;x O *
@3), ATy ¢y O (by the Weak Duality)
c'x_ by
2 3 2 3
. A 0 b
§ 07 07 *
, 9 0: 0 AT C
y o 157 0
. 0
2 3 2 3:2 3 2 3;2 3
N S S A 0 S b N
t t | 0 t 0
: 6 Ru 0:Ru 0 AT4=0andRu ¢, <0 (by Gale's Thm)
% % 0 I % 0
w w ct b w 0
« 23 A
s
, 64ud 0:ATs cw;Au bw;ds<cTu
w
, 6 93 0:ATs O0;Au O;b's<cTu (by the Weak Duality)

, A's 0;Au 0;s O;u 0) b's clu

Now the last step of the proof is to show the last statement above @&ways true which
implies the theorem. Assume

A's 0;Au 0;s O;u O:
By the assumption, we have a dual pairx;y) of feasible solutions. Thus, we have
b's c'u (Ax)"s (ATy)'u=x"ATs y'Au 0 0=0:
This completes the proof. | |

Theorem 3.4 (Complementary Slackness Conditions) For a dual pair (X;y) of feasi-
ble solutions for (P) and (D), the following conditions are equivalent:

(a) both X and y are optimal solutions;
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(b) c'x = b'y;
(c) y'(b AX)=0 and X"(ATYy ¢©)=0.
(c) vi(b AX); =0 for all i and X;(ATy c¢); =0 forallj.
(c") ¥, > Oimplies (b AX); =0, for all i and
X; > 0 implies (ATy ¢); =0, for all j.
Proof.  Left to the reader. |

Exercise 3.6 Write the Complementary Slackness Conditions (Theorem3.4) for ¢hLP of
form maxc'x subject to Ax band its dual LP, and prove the validity.

3.4 Three Theorems on Convexity

Before we discuss the theory of representations and combinasbrstructure of convex poly-
hedron, it is good to mention some basic facts about convexity.

For any subsetS of RY, the convex hull conv(S) of S is the intersection of all convex sets
containing S. Since the intersection of two convex sets is convex, it is the smatlesnvex
set containingS.

Proposition 3.5 Let S be a subset RY. Then

X« X«
conv(S) = fx :x = ipi; =1: . 08i=1::::k

i=1 i=1

(3.5)

Proof. Let the RHS of (3.5) beT. One has to show both inclusions con®) T and
conv(S) T. Both inclusions are elementary and left to the reader. |

One basic theorem on convexity is Caratreodory's theorem, sagnthat the niteness
condition onk in (8.5) can be much more restrictive, namelyjk d+ 1.

Theorem 3.6 (Caratleodory's Theorem) Let a point p be in the convex hull of a set S

Proof. Left to the reader. Hint: Whenk d+ 2, tl]§ points p;: pi P are a [Cnely
dependent, i.e., there exist 1;:::; ¢ notall zerosuchthat , {=0and , ip = 0. Use
this to show that at least one point inS is unnecessary to represerx. |

Here are two more basic theorems on convexity.

Theorem 3.7 (Radon's Theorem) Let S be a subset of of RY with jSj d+2. Then S
can be partitioned into two sets S; and S, so that conv(S;) \ conv(S,) 6 ;.
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S1

Proof. SincejSj d+ 2, the points in S are a nely dependent. Use this factto nd a
natural partition. [ |

Theorem 3.8 (Helly's Theorem) Let C;; Cy::::; Ch be convex sets in RY such that C; \
C,\  \ C; = ;. Then, there is a subfamily of cardinality at most d+ 1 whose intersection
IS empty.

C3

Cy

C2

Proof. (Clearly, the convexity assumption onC;'s is important as the theorem fails with
only one nonconvexC; above.) Use induction onh. If h  d+ 1, the theorem is trivial.
Assume that the theorem is true foh < k (  d+2) and prove (*) the theorem holds forh = k.
Note that h  d+ 2. Suppose the statement (*) does not hold, namehy5; := \ ;¢;C; 6 ;
foralli =1;:::;h. Apply Radon's theorem to get a contradiction. | |

conefvy;:::;wQ) = fx:x= ivi; i 08i=1;:::;kg: (3.6)

i
For subsetsP and Q of RY, their Minkowski sum P + Q is de ned as
P+Q:=fp+q:p2P andqg2 Qg: (3.7)

Theorem 3.9 (Minkowski-Weyl's Theorem for Polyhedra) For P RY, the follow-
ing statements are equivalent:

(@) P is a polyhedron, i.e., there exist A 2 R™ 9 and b2 R™ for some m such that
P=fx:Ax bg;

(b) P is finitely generated, i.e., there exist (finite) vectors v;’s and r;’s in RY such that
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The statement (b) above can be written in matrix form as follows. He, 1 denotes a
vector of all 1s.

(b) P is finitely generated, i.e., there exist two matrices V 2 RY Sand R 2 RY ! for some s
and t such that P=fx:x=V +R; 0;17 =1; 0g.

Theorem[3.9 actually consists of two theorems. The direction frona) to (b) is Minkowski's
Thoerem, while the reverse direction from (b) to (a) is Weyl's Theora.

When a polyhedronP is bounded (thus a polytope), the minimal representation consists
of all extreme pointsvy, :::, Vs and no rays. Another special case df = 0 leads to a
homogeneous version of the theorem. It is a special case but it isuadly as powerful as the
nonhomogeneous version above (Exercisel3.7).

Theorem 3.10 (Minkowski-Weyl's Theorem for Cones) For P RY, the following
statements are equivalent:

(a) P is a polyhedral cone, i.e., there exist A 2 R™ 9 for some m such that
P=1fx:Ax Og;

(b) P is a finitely generated cone, i.e., there exists a matrix R 2 RY t for some t such that
P=fx:x=R; 0g.

We rst show one direction which follows almost immediately by the Fouer-Motzkin
elimination.

Proof. (for Theorem[3.10 (b) 9 (a)). Assume that P is a nitely generated cone and
there exists a matrixR 2 RY ' such that P = fx : x = R; 0g. The conditions
X=R; 0 can be considered a system of linear inequalities in variabbesand . Thus
one can apply the Fourier-Motzkin elimination to eliminate all variables 4, :::,  from
this system. The result is an equivalent system of inequalities ix variables. This is a
representation of form (a). | |

Let us say that a pair (A; R) of matrices is adouble description pair or simply a DD-pair
if they represent the same polyhedron, namely,

Ax 0, x=R,; forsome 0: (3.8)

With this language, the Minkowski theorem says for any matriA, there existsR such that
(A;R) is a DD-pair. The Weyl theorem states that for anyR, there existsA such that (A; R)
is a DD-pair.

Lemma 3.11 For two matrices A 2 R™ 9 and R 2 RY !, the pair (A;R) is a DD-pair if
and only if (RT;AT) is a DD-pair.

Proof. = Because of symmetry, we only need to show one direction. Assurhe pair (A; R)
is a DD-pair, namely [3.8) is valid. Now we have to showR"; AT) is also a DD-pair. Now
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we have a sequence of equivalences
Ry 0

, "Ry 0:8 0

, R)'y 0,8 0

, Ax Oimpliesx'y 0 (by the assumption [3.8))
, XIAx Oandy'x>0
, y=AT; forsome 0 (by Farkas' Lemma).

The equivalence of the rst and the last statement is exactly what & needed to prove.

This lemma has a very useful consequence in computation, namely ane needs to
implement both transformations between (a) and (b) but only one.

Proof. (for Theorem[3.10). We have already proved Weyl's theorem. On tlegher hand,
Lemmal3.11 says that showing one direction is su cient to prove botldirections. This
completes the proof. | |

As Lemmal[3.1Il indicates, there is a polyhedron associated with theip&R';AT).
Namely, if (A;R) is a DD-pair, the polyhedral cone

P =fy2RY: Ry O0g (3.9)
=fy2RY:y=AT: 0g (3.10)
is known as thedual or the dual cone of P = fx:Ax 0g=fx:x=R; 0g.

Exercise 3.7 Derive the nonhomogeneous Theorem 8.9 from the homogeneousdiem
[3.10. Hint: Homogenize a given nonhomogeneous system with an axtiimension, convert
it by the homogeneous theorem, and then get a nonhomogeneoepresentation.

The Fourier-Motzkin elimination is not practical for converting between two represen-
tations of polyhedra, due to the explosion of the size of intermedmtsystems. Methods
known as thedouble description method and the reverse search method are both much more
practical and used in many existing implementations (e.gltslib , cddlib ).

3.6 The Structure of Polyhedra

For a nonempty polyhedronP in RY, we de ne two sets thelinearity space and the recession
cone.

lin:spaceP) :
rec conef) :

fz:x+ z 2P;82Pand8 2 Rg (3.11)
fz:x+ z 2P; 8 2P and8 Og: (3.12)

The recession cone is also known as tlkbkaracteristic cone. Both sets contain the origin,
and in general linspaceP) rec conef).

A polyhedron P is calledpointed if it contains an extreme point. Here are some structural
properties of polyhedra.
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Theorem 3.12 Let be P be a nonempty polyhedron in RY, the following statements hold:

(@) If P is written as P = Q + C for some polytope Q and some polyhedral cone C, then
C =rec:conef).

(b) If P is represented as P = fx : AX  bg, then
recconefP)= fz:Az O0gand lin:spaceP) = fz: Az = 0g;

(c) P is pointed if and only if lin:spaceP) is trivial, i.e., lin:spaceP) = f0g;
(d) P is bounded if and only if rec cone@) is trivial , i.e., rec conef) = f0g.

Proof. Left to the reader. [ |

The statement (a) of the theorem above implies that in the generat reporesentation

Corollary 3.13 If P isacone fx : Ax 0g and pointed, then there exists a vector ¢ such
that c"x > 0 for all nonzero x 2 P.

Proof.  Setc’ = 1TA. Show that this vector satis esc'x > 0 for all nonzerox 2 P
(Exercise). | |
Forc2 R%and 2 R, aninequality c"x is calledvalid for a polyhedronP if c'x

holds for allx 2 P. A subsetF of a polyhedronP is called aface of P if it is represented
asF = P\f x:c'x = ¢ for some valid inequalityc’ x

c’x=h c'x=b

c'xeb

c"'xeb

Note that both ; and P are faces, calledrivial faces. The faces of dimension O are called
vertices and the faces of dimension dinl{) 1 are calledfacets. The faces of dimension
are called thei-faces.

The rst important fact on faces is that there are only nitely many of them. It follows
from the following.

Theorem 3.14 LetP = fx 2 R%9: Ax bg. Then a nonempty subset F of P is a face of P
if and only if F is represented as the set of solutions to an inequality system obtained from
Ax  bby setting some of the inequalities to equalities, i.e.,

F=1fx:Ax=Db"and A>x IFg; (3.13)

Al b

where A = A2 and b= ¥
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Proof. Let F be a nonempty face. ThenF = P\f x:c'x = g for some valid inequality
c'x . The setF is the set of optimal solutions to the LP: maxc'x subject to Ax b.
Since the LP has an optimal solution, the dual LP: mib'y subject to ATy = c;y 0 has
an optimal solution, sayy , by the strong duality, Theorem[3.B8. Then, putAjx b to
be in the equality part A'x = b' if and only if y, > 0. Then the resulting setF°= fx :
Alx = bt and A2x  k?g coincides withF, sinceF?is the set of points inP satisfying the
complementary slackness conditions, see Theoréml 3.4 and ExerBi&e

The converse follows immediately by setting” = 1TA' and = 1Tb', for a nonempty
setF of form (3.13). [ |

Corollary 3.15 Every minimal nonempty face of P = fx 2 R : Ax bg is an a [nel
subspace of form fx : Alx = btg where Alx = b' is a subsystem of Ax = h.

Proof. By Theorem[3.14, every nonempty facé has a representation of form
F=fx:Alx=b andA%>x g

AssumeF is minimal. SetF%= fx : Alx = b'g. We will show that F = F°% We claim that
the inequality part A2x > must be redundant in the representation of. Suppose some
of the inequalities can be violated by a point ifF®% Then, F%is not a minimal nonempty
face (why?), a contradiction. | |

Exercise 3.8 Show that the vertices of a polyhedron are exactly the extreme ps.

Corollary 3.16 Let P = fx : Ax  bg be a rational polyhedron. Then, every nonempty
face of P contains a point of size polynomially bounded by the largest size of rows of [A;b].

Proof. Let denote the largest size of rows oA[b]. It is enough to show the claim for
every nonempty minimal face oP. By Corollary 3.13, every nonempty minimal face is the
set of solutions to a systemA!x = b', where A'x b' is a subsystem ofAx  b. Clearly
at most d equations inA'x = b' are independent, and by Corollary_2]3, the system has a
solution whose size is bounded by  which is polynomially bounded by . |

This corollary also implies that every extreme point of a polyhedron Isssize polynomially
bounded by the largest size of rows oA[b].

Theorem 3.17 Let P = fx : Ax  bg be a rational polyhedron. Then, it has a generator

is of size polynomially bounded by the largest size of rows of the matrix [A; b].

Proof. Let P = fx : AX bg be a rational polyhedron, andA and b be integer. Let
denote the largest size of rows of the matridd|; b].

If P is bounded, the minimal generator representation is the set of egtme points and
the size of each extreme point is polynomially bounded by by Corollary [3.16.

If P is a pointed cone, by Corollary—3.13, the intersection d? with the hyperplane
1"Ax = 1 is a polytope. Clearly the extreme points of this polytope constiteta minimal
representation ofP and have size polynomially bounded by. (The hal ine generated by
each extreme point is called amextremal ray of this pointed cone.)

If P is a pointed polyhedron, it is the Minkowski sum of a polytope and a pdied cone,
and the rst two cases imply the theorem.
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If P is not pointed, the linearity space is the null space &, the Gauss-Jordan algorithm
applied to Ax = 0 produces a generator representation of this space by linearlydependent

generator representation of polynomially bounded size. |

Remark 3.18 From the proof of Theorem [3.17], a minimal representation of a polyhedron
P consists of a set of points each of which is from a minimal nonempty face of P, a set of
vectors to generate the pointed cone which is the intersection of P with the linear subspace
orthogonal to the linearity space of P, and a set of vectors to generate the linearity space.

Corollary 3.19 ForA2 Q™ 9 B2 Q™ "and c2 Q™, let P be the polyhedron f(x;y) 2
R¥®" : Ax + By o¢g, and let P, be the orthogonal projection of P to the x-space, i.e.,
X 2 Py if and only if (x;y) 2 P for some y 2 R". Then, Py admits an H-representation
fx 2 RY:Dx fg such that the size of each [D;;f;] is polynomially bounded by the largest
size of rows of the matrix [A;B;c]. Note that in general the number of rows in D may be
exponential in one of m, n and d.

Proof. Left to the reader. Hint: Using the Fourier-Motzkin Algorithm showthat P, =
fx:z"TAx z"c;8z 2 Cg for the \projection" cone C=fz2 R":z"B = 0;z 0g. Then,
apply Theorem[3.17. [

3.7 Some Basic Polyhedra

standard d-cube is the convex hull of 2 0=1 points in RY, and ad-cube is any full-rank a ne
transformation of the standardd-cube. Azonotope in RY (generated byk generators) is the
Minkowski sum ofk line segments irRY. The standard cube is a special zonotope generated
by the d line segments(; g ], whereg denotes thej th unit vector.

The following table gives the number of-faces of ad-simplex and of ad-cube. It also
gives the tight upper bound of the number of-faces of a zonotope, which will be proved in
Chapter[10.
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Type Figure # Vertices # Facets | # i-Faces
d-Simplex d+1 d+1 ol
—— 7
d-Cube 2 2d 424
K P d 1 k 1 k kd 1
Zonotope(; k) 2 i 2 4 O( )

Table 3.1: Simplex, Cube and Zonotope

25

Exercise 3.9 Show that the formula in Table[3.1 for the number of-faces is correct for
d-simplices and ford-cubes.
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4 Integer Hull and Complexity

Integer linear programming or simply integer programming (abbreviad by IP) is an exten-
sitvely studied branch of optimizaton. One form of the IP is a linear psgramming with the
additional integer constraints on the variables.

max c'x
subject to Ax b 4.1
x 2 z4:

where AQ™ 9 and b2 Q™ are given. Another form more convenient for the analysis of its
complexity is the decision problem

decide whether there exists x
such that AX b (4.2)
x 2 Z9:

In this chapter, we show that IP is NPC, meaning, the decision probte (4.2) is NPC. There
are two things in this statement, IP is NP-hard (i.e., at least as any mblems in NP), and
IP is in NP.
The rst part is very easy to see by the standard polynomial redumon from SAT (the
satis ability problem). For this we take an NPC problem 3-SAT:
given a boolean expression in binarg-variables B (x) := Vi";l Ci
where each claus€; is a disjunction of three literals (4.3)
decide there exist 2 f 0; 1g° such that B(x)=1:

The reduction is simple. To reduce this problem to an IP, we will use ecgtly the same
varighles x5, Each x; is integer and restricted as O x; 1. For each clause, for example,
(X1 Xz Xs), we set up the inequality:

X1+(@Q X))+ x5 L (4.4)
Furthermore, each variablex; is restricted as 0  x; 1. With all these constraints
together, we have an IP of form[{4]2) which is equivalent to 3-SAT. bfeover the reduction

is polynomial.

Thus, the most critical part of the statement \IP is NPC" is, in fact, IP is in NP . More
precisely, this means that if an IP [(4.2) admits a solution, there is a kdion whose size is
bounded by a polynomial function of the input size siz&f b].

To see this, one important notion is the integer hull of a polyhedron.For a rational
polyhedronP = fx : Ax by, its integer hull is de ned by

P, :=convfx:x 2 P\ Z%: (4.5)

Section[4.2 analyses the complexity d?, and shows why IP is in NP. In fact, we prove
a stronger statement (in Theoren_4]3) that a feasible IP admits a kdion whose size is
bounded by a polynomial function ofthe largest size of rows of [A;b].
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4.1 Hilbert Basis

The Hermite normal form B 0] of a rational matrix A 2 Q™ 9 can be considered as a
minimal generating set of the latticeL (A) generated byA. Namely, the m columns ofB
form a minimal set of vectors inR™ whose integer combinations generate(A).

In this section, we are going to deal with the lattice points in a polyhedl cone. Is there
any similar basis for the integer points in a polyhedral con€ generated by rational vectors

Here we are mainly concerned with integral Hilbert basis.
Note that a Hilbert basis is sometimes called &lilbert finite generating set and then the
term Hilbert basis is used only for the ones that are (set-inclusion) minimal.

Theorem 4.1 Every rational cone admits an integral Hilbert basis. Futhermore, if it is
pointed, a (set-inclusion) minimal integral Hilbert basis is unique.

Proof. Without loss of generality, we assume a rational con@ is generated by integral

vectors a;; ay;:::;a& in RY, i.e.,, C = cone(fas; ay;:::;aQg). We claim that the nite set
B = fby;:::; g of integral vectors contained in the zonotope
Xt
Z=fx2R%:x= ia:0 i Li=1;:::19 (4.6)

i=1

is a Hilbert basis, see Figure4l.1 for an example with=2, t =2 and k = 8.

Figure 4.1: The ConeC and the PolytopeZ.

Let p be any integral point in C. Then, we have

p= i, i Oi=1;0 4.7)
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for some ; (not necessarily integer). Furthermore, we have

Xt Xt
P bica= (i b i0ga: (4.8)

First, the LHS is an integer vector. Secondly, the RHS vector, theame vector as the

LHS, isinZ, because 0 ; b c< 1. Therefore, it is an integer vector inZ which is
amonghby;:::;h. Sinceay;:::;a are contained infhby;:::;hg, p is a nonnegative integer
combination ofby;:::; b

For the second part, assume that the con€ is pointed. We claim that

B.=fx2B nfOg: x is not the sum of two other vectors inBg 4.9

is a uniqgue minimal Hilbert basis. It is easy to see that every vector i® must be in any
integral Hilbert basis. Now, we need to show that every vectdn in B not in ® can be
represented as nonnegative integer combination of vectorsih Suppose there is a vecton
in B violating this property, and take such a vectotb minimizing c"b, wherec is a vector such
that c"x > 0 for all nonzerox 2 C. The existence oft is guaranteed becaus€ is pointed,
due to Corollary[3.I8. Becaus®is notin B, b= h + iy for some nonzero vectorf, J in
B. Now, we havec'b= c"h + c'h, and all terms are positive. This means™h < c"band
c"h < cTh By the assumption thatc” bis minimized under the condition thatbis not in B,
both b and b must belong to ®, contradicting b is not a nonnegative integer combination
of vectors in®. ||

Exercise 4.1 Show that if a rational cone is not pointed, a minimal integral Hilbert lasis
IS not unique.

Exercise 4.2 In the proof above, assume that = d and the rational cone is generated by

is the number of lattice points in the zonotopeZ and k 29, because the zonotop& is
combinatorially a cube.

4.2 The Structure of Integer Hull

For a rational polyhedronP in RY, recall that its integer hull P, is de ned as the convex
hull of all integer points in P:

P, :=convfx:x 2 P\ Z%: (4.10)

It is not clear from the de nition that the integer hull is a polyhedron, and in particular
nitely generated. We will show that this is the case and the proof es an argument similar
to those used to prove the existence of a Hilbert basis.

There are some obvious facts on the integer hull. First of all the inger hull of every
rational coneC is C itself:

C = C: (4.11)
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Theorem 4.2 The integer hull P, of a rational polyhedron P is a polyhedron itself, and if
it is nonempty, then P, = B + C, where B is an integer polytope and C =rec: conef).

Proof. Assume that P is a rational polytope with a decompositionP = Q + C into a

polytope Q and the recession con€. Assume thatP, is nonempty. Leta;;a,;:::;& be
integral vectors inRY with C = cone(fay; ay;:::;aQ). Let Z be the zonotope de ned by
Xt
Z=fx2R%:x= a0 i Li=1:;::::to (4.12)

Figure 4.2: The Critical RegionQ + Z.

For the proof of the theorem, it su ces to show that
P,=(Q+ Z), + C: (4.13)
Tosee Q+ Z), + C P, observe
Q+Z)+C P +C=P+C (P+C) =P

For the reverse inclusion, take any integer poinp 2 P, and we show thatp2 (Q+ Z), + C.
This is su cient because Qg+ Z), + Gois convex. fNowp = g+ ¢, for someq 2 Q and
c2 C. Now, we havec= ; ja = ,bica+ (i b ;c)a, where the rst term
is denoted byc® and the second byz. Clearly, ®2 C\ Z9andz 2 Z. It follows that
p= g+ + z=(qg+ z)+ which implies that g+ z is integer and thusq+ z2 (Q + Z),.
Sincec®2 C, we havep2 (Q+ Z), + C. [

Theorem 4.3 The integer hull P, of a rational polyhedron P = fx : Ax  bggiven by an in-

the largest size of rows of the matrix [A; b].
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Proof. Let P = fx : Ax bg be a rational polyhedron and let denote the largest size
of rows of A; by.
By Theorem[3.17, a rational polyhedrorP has a generator representatio® + C with

Q = conv(fvy;:::;v0) and C = cone(fry;:::;rng), where each ofvi's and rj's has size
polynomially bounded by . We may also assume that alk;'s are integer vectors. By
Theorem[4.2, reccone,) = frq;:::;rng. We shall show that
P, =conv(fz;:::;z0)+ C; (4.14)
wherezy;:::;z are the integer points in the setQ + Y and
X
Y="fyy= ifi; 0 i Lj=1;00h (4.15)
j=1
at mostd of ;'s are positivey: (4.16)

Each vectorz has size polynomially bounded by, because alf;'s are integer, polynomially
bounded by in size, at mostd of them are used to represert;, and every integer point in
Q has size polynomially bounded by.

We are left to show the equation[(4.14). For this, it is su cient to shav that each minimal

Z be an integer point ofF . Becausez 2 P

X
z=q+ ifis (4.17)
j=1
for some ; 0. By Caratreodory's Theorem (Theoreni 3.6), one may assumeahat most
d of ;'s are positive. Letz®be the vector
X
20:= g+ ( j b jc)rj: (4.18)
i=1
It follows that z%is an integer vector and thus it is one of the vectors frorhizy;:::;zQ. It
is easy to see thatz®2 F. This completes the proof. | |

Corollary 4.4 IP (4.2) is in NP (and thus in NPC).

4.3 Complexity of Mixed Integer Programming

One natural question is as to whether the mixed integer programngn(MIP) is in NP, and
thus in NPC. An MIP is to

decide whether there exists XY)
such that Ax + By ¢ (4.19)
x22Z% y2R"

whereA2 Q™ 9 B2 Q™ "andc2 Q™ are given.
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Theorem 4.5 MIP (@.I9) is in NP (and thus in NPC).

Proof. For the proof, it is su cient to show that if the MIP admits a feasible solution
(x;¥) then there is a feasible solutionx; y) such that x has size polynomially bounded by the
input size. To see this, we assume that the MIP has a feasible solutiand we look at the
projection Q of the nonempty polyhedronP = f(x;y): Ax+ By cgtothe x-space. Note
that Q, is nonempty. By Corollary[3.19,Q admits an H-representationfx 2 RY:Dx fg
such that the size of eachl};f;] is polynomially bounded by the largest size of rows of the
matrix [A; B;c]. By Theorem[3.17, it follows thatQ has a V-representation in which the
size of each generator in the representation is polynomially boundbég the largest size of
rows of the matrix [A;B;c]. Now, by Theorem[4.B applied toQ, we have thatQ, has a
V-representation in which the size of each generator is polynomiallpbnded by the largest
size of rows of the matrix ;A; B; c]. This completes the proof. ||

Notes 4.6 The author was not aware of a written proof of Theorem [4.5. The proof above is
due to Francois Margot (Carnegie Mellon University) and the author in October 2010. We
learned in October 2010 that an independent proof was being written by Michele Conforti
(University of Padova) and Gérard Cornugjols (Carnegie Mellon).

4.4 Further Results on Lattice Points in Polyhedra

Here, we mention some important results on lattice points in polyhedrwithout proofs. The
original proofs are not particularly di cult but beyond the scope of this lecture notes.
The following is known as an integer analogue of Caratheodory's theem.

Theorem 4.7 (Cook, Fonlupt and Schrijver (1983)) Let C be a pointed rational cone
and let B be the minimal integral Hilbert basis. Then, every integer point p in B is an integer
nonnegative combination of at most 2d 1 of the vectors in B.

Later this bound 2d 1 was improved to 2 2 by Sebd (1990).

Another interesting result is on the distance between the integer@gramming solutions
and the solutions to the linear programming relaxation.

Theorem 4.8 (Cook, Gerards, Schrijver and Tardos (1986)) For a given matrix A 2
Z™ 9 vectors b2 Z™ and c2 Z9, let (IP) be the integer programming problem maxc' x sub-
jectto Ax band x 2 Z9, and let (LP) be its LP relaxation (without the x 2 Z¢ contraints).
Let D denote the largest absolute value of subdeterminants of A. Assume that both problems
admit an optimal solution. Then the following statements hold.

(@) For any optimal solution x of (LP), there exists an optimal solution z of (IP) such
thatjx; zj dD for alli.

(b) For any optimal solution z of (IP), there exists an optimal solution x of (LP) such
thatjx; zj dD for alli.

By Theorem[21, the size oD is at most twice the size of the matrixA. The theorem
above thus shows that there exists an optimal solution to (IP) in aypercube of a width of
polynomial size centered at a given LP optimal solution, if both admit @ optimal solution.
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5 Duality of Polyhedra

Duality in convex polyhedra is a very interesting notion not only in the heory of poly-

hedra but also in polyhedral computation. Duality implies that two bag representation

conversions between V-representation and H-representatiohapolyhedron are essentially
the same thing. Yet, in order to convert one to the other is someties tricky because there
are certain assumptions under which any speci ¢ conversion can nko

5.1 Face Lattice

Let P be a convex polytope irRY. Each faceF of P is a convex polytope again by de nition.
The dimension dim(P) of P is the maximum number of a nely independent points in P

minus one. The number ok-dimensional faces oP is denoted byf(P). By Theorem[3.14,
fk(P) is nite. A k-dimensional face (polytope) is called simplk-face (k-polytope). For a
d-polytope P, the vector

f(P):=(f wfo;fesiiiifa) (5.1)

is called thef-vector of P. Clearly f ;= fq=1.

The O-faces of al-polytope are called thevertices, the 1-faces theedges, the (d 1)-faces
the facets, and the (d 2)-faces theridges.

We denote byF (P) the nite set of all faces of P ordered by set inclusion. This is called
the face lattice of P. Recall that a lattice is a partially ordered set (poset in short) whes the
join (the least upper bound) and the meet (the greatest lower ba) of any two elements
a and b exist in the set. The face lattice of a polytope is also known as tleembinatorial
structure of the polytope. In Figure[5.1, the face lattices of 1-, 2- and 3-cab are depicted,
whose f-vectors ard 1;2;1g, f1;4;;4;1g and f1;8;12 6; 1g. One can easily show that all
1-polytopes are nite line segments and thus are combinatorially theamediamond.

Figure 5.1: The Hasse diagram of the face lattices of 1-, 2- and 3es8

A lattice is called polytopal if it is isomorphic to the lattice of a polytope. Polytopal
lattices are very special. The following proposition summarizes this.

Proposition 5.1  Every polytopal lattice satisfies the follow properties.

(a) It satisfies the Jordan-Dedekind chain property i.e., all maximal chains between any
two ordered elements a < b have the same length.
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(a) For any two ordered elements a < b, the interval [a; [, the set of elements between a and
b, is again a polytopal lattice. In particular, this means that every interval of height 2
is a diamond.

We shall prove these properties in a later section, as we do not usein to prove the
polytopal duality to be described below.

For a polytopeP, a polytopePis called adual of P if F (P9 is anti-isomorphic toF (P),
where two lattices are called anti-isomorphic if one is isomorphic to thgside-down (order
reversed) lattice of the other. It follows that a polytopeP and a dual polytopeP? have the
same dimension, and their f-vectors are reversed(P) = fq ; (P9 foralli= 1;0;:::;d.
The following is the fundamental theorem of duality.

Theorem 5.2 Every polytope admits a dual polytope.

It is easy to see that a dual polytope is not unique. Ang-simplex is a dual of ad-simplex.
A 3-cube is a dual of an octahedron but there are many geometrilyadi erent polytopes
with isomorphic face lattices.

Yet, there is a simple construction of a dual polytope which is extresty useful, both
theoretically and computationally. For a convex bodyC in RY containing the origin 0 in its
interior, de ne its polar denoted byC as

C =fy2R%:x"y 1;8x2 Cg: (5.2)

Theorem 5.3 Let P be a polytope containing the origin O in its interior. Then its polar P
is a dual polytope of P.

5.2 Active Sets and Face Representations

As we learned from Theorem 319, every polyhedron has two repnetsg¢ions, H-reprentation
and V-representation. These two representations are closely letk to duality. Intuitively,
by setting the transpose of an H-representation as a V-repretion, we obtain a dual. This
statement is in general incorrect and can be stated correctly witbroper assumptions.

Let P be a polyhedron with an H-representation4;b) and a V-representation ¥; R).
Each row of (A; b) is denoted by @A;;h), representing the inequalityAjx k. Each column
of V and R is denoted byv; and ry, respectively, thejth vertex generator and thekth
ray generator. We employ a little abuse of language here. An H-rgsentation @;b) is
considered as the set of all its rowsA(; ), and similarly V (R) is considered as the set of
all its columnsy;'s (ri's).

Let F be a non-empty face ofP. An inequality (Ai;h) is called active at F if the
inequality is satis ed with equality at all points in F. The set of all active inequalities is
called theactive inequality set atF.

Similarly, a vertex generatory; is calledactive at F if v; 2 F. Aray generatorry is called
active at F if moving from any point onF along the directionry won't leave the polyhedron,
e, X+ ry2F foranyx 2 F and 0. The pair (V% R9 of sets of all active vertices and
active rays are called theactive generator sets atF. We extend the set inclusion for pairs of
sets in the natural way, we de ne Y%R% (V%R9 if and only if V© V%and R® R°

Active inequalities and generators are very important for represtation of faces and face
lattices.



IP (Fukuda) v.2015-02-14 34

Theorem 5.4 Let P be a polyhedron with a V-representation (V; R), and let F be a nonempty
face of P. Then the active generator set pair (V% R9 at F is a V-representation of F.

Proof. Let (J;K) be the column index sets of (% RY, namely, V%= (v; :j 2 J) and
RO=(ry :k 2 K). Let

F=fx2R%:x=V? % RO® 0 017 0=1; ° Qg

We need to showF = F. By de nition of active generators, we haveF F. For the
converse inclusion, lep 2 F and supposep 62F. Sincep2 P,

p=V +R (5.3)

for some 0,1" =1 and some 0. Becausep 62F, we have ; > 0 forj 62J or

k > 0 for k 62K . Suppose there ig 62J such that ; > 0. Then,v; 62F. Let (A;b)
be an H-representation oP. Sincev; 62F, there is an inequality A;; ) active at F such
that Ajv; < b;. Since this is active at F,A;jp = b and this implies that there is a ray or
vertex generator in the RHS representation 5.3 gé which violates this active inequality.
This is impossible. The second case is impossible by a similar argumentu3}p 2 F. This
completes the proof. | |

Theorem 5.5 Let P be a polyhedron with an H-reprentation (A;b) and a V-representation
(V;R). Then

(a) the face poset F (P)nf;g is anti-isomorphic to the set of all active inequality sets ordered
by set inclusion;

(b) the face poset F (P) nf;g is isomorphic to the set of all active generator sets ordered by
set inclusion.

Proof.

(&) It is clear that the larger a face is, the smaller its active inequality seis. The main
guestion is if the strictly larger a face is, the strictly smaller its activanequality set
is. This follows directly from Theorem 3.14.

(b) Using a similar argument to (a), (b) follows from Theoreni 514.

5.3 Duality of Cones

Before proving the duality of polytopes, we show the duality of coses a straightforward
consequence of Theorem 5.5, a basic theorem on face lattice repngations by active sets.

The notion of dual (polyhedral) cone is essentially the same as that polytopes, the
face lattice of a dual is the polar (upside-down) lattice. There is a st technical di er-
ence. Cones are di erent from polytopes in the sense that evergre has a unique minimal
nonempty face (containing the origin), which plays exactly like the epty face of every poly-
tope. For this reason, we de ne thdace lattice F (C) of a cone C as the set of allhonempty
faces of C ordered by set inclusion. Accordingly, we say that a con@®is adual cone of a
coneC if F(C) and F (C9 are anti-isomorphic.
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Theorem 5.6 Every (polyhedral) cone admits a dual cone.

Our proof is by construction. For this, we de ne two cones. For agalm d matrix A,
we denote byCy (A) the cone with A as its H-representation:

Ch(A)=fx:Ax Og: (5.4)
For areald s matrix R, we denote byCy (R) the cone with R as its V-representation:
Cv(R)=fx:x=R; Og: (5.5)

Using this notation, Minkowski-Weyl Theorem, Theoreni-3.10, saysat a set C is of form
C = Cu (A) for some matrix A if and only if C = C, (A) for some matrix R.
The following is a stronger (constructive) version of the cone duajit Theorem[5.6.

Theorem 5.7 For any real m d matrix A, the cone Cy (A) and the cone Cy (AT) are dual
to each other.

Xg

Figure 5.2: Cone Duality

Proof. Let A be arealm d matrix. Let F be any nonempty face ofC, (A), and let
I [m] be the set of active inequality row indices aF, i.e., F = fx 2 C4(A) : Ajx = Og
and

9¢c 2 RY such that Aic= 0;8i 2 I; and
Ajc<0;8 2 [m]nl:

Or equivalently,

9c 2 RY such thatc"(A))" = 0;8i 2 I; and
c'(A))" < 0;8 2 [m]nl:

Noting that the vectors (A;)T (i 2 [m]) are the generators of the con€y (AT), the relations
above show exactly thatf (A;)T :2 Ig is the active generator set at the face o€y (AT)
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determined by the valid inequalityc™x 0 for the coneCy(AT). The reverse direction is
obvious.

This provides a one-to-one correspondence between the set afiempty faces ofCy (A)
and the set of nonempty faces ofy (AT), reversing the set inclusion. This completes the
proof. | |

5.4 Duality of Polytopes

As we learned in the previous section, the duality of cones arisesyaaturally, and in fact,
an H-representation of a cone immediately gives a V-representatiof a dual cone, and vice
visa: the conexCy (A) and Cy (AT) are dual to each other for any matrixA.

To derive a similar construction for polytopes, one can use the codeality carefully.
The main idea is to express a-polytope P as the intersection of ¢ + 1)-cone C in such a
way that P is embedded inC as the intersection ofC with hyperplane x4.; = 1. This is
easy to do ifP is a V-polytope. This gives some matrixR and the coneCy (R) in R%1.
We know how to construct a dual ofCy (R): Cy(RT). The hard part is the rest: we have
to make sure that it is \nicely" intersected by a hyperplane so that he intersection is a
polytope and has the same face lattice & (RT). If this is done, we have the construction
of a dual of P.

— Vi Vo Vm .
v = 1 1 1 (5.6)
By Theorem[5.7, the following cone€ and D de ned below are dual to each other

C:
D :

Cv(V)=fx:x=Y; 0g; (5.7)
Cu(V)=fx:¥"x O0g (5.8)

Furthermore, by construction, the coneC representsP nicely.

Proposition 5.8 The face lattices F (P) and F (C) are isomorphic.

Proof.  Consider the cut sectionP® of C with the hyperplaneh *:= fx 2 R™! : xg4,; =
1g. It follows that P and PP are a nely equivalent, and in particular, their face lattices

are isomorphic. It is left to show thatF (C) and F (P9 are isomorphic. This follows from

the fact that ¥ is not only a V-representation ofC but also a V-representation ofP° | |

A proof of Theorem[5.2 is almost complete, because we know the fdatice of D
is the target lattice we need to realize as the face lattice of a polytep The only thing
we have to show is that the condD can be cut nicely by a hyperplane so that the cut
section, sayQ® has the face lattice isomorphic toD. For this, consider the hyperplane
h*l := fx 2 R™! : x4ys =+1g. dene

Q%:= D\ h't: (5.9)
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Observe tk@\t

2 3 9

2 vi 1 2
Q%= X opRe g S £ X 0. \f x2R¥! :xqy =+19g (5.10)

> Xd+l Xd+l >

' vl ’
= )i 2R¥ :vIx 1;8i=1;:::;m : (5.11)

Thus, the polyhedronQis a nely equivalent to the polyhedron

Q=fx2RY:v'x L;8i=1;:::;mg=fx2R%:V'x 1g (5.12)

The polyhedron Q (and Q% may not have the face lattice isomorphic toD in general.
Construct a small example to show this fact. The following lemma givesright assumption
for duality to work.

Theorem 5.9 If P contains the origin in its interior, the polyhedron Q is a polytope dual
toP.

Proof. Assume that P contains the origin in its interior. The only thing left to be
shown is that the face lattices of the con® and the polyhedronQ® are isomorphic. For
this, it is su cient to show that Q°is bounded and a V-representation oQ° is in fact a
V-representation ofD. (Figure 5.3 shows that the assumption is in fact necessary.)

%

Figure 5.3: Polytope Duality: When it works and When it does not
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Observe that the assumption is equivalent to

rankV = d; and (5.13)
9 > OsuchthatV = 0: (5.14)

By (a variation of) the Alternative Theorem (Exercise??), the statement (5.14) is equivalent
to

XIsuch that V'x [COl &13)

In order to show that Q (and Q9 is bounded, suppose the contrary: there is a unbounded
direction in Q, i.e., a nonzero vector such thatV'z 0. By (514", this impliesVTz = 0
and z 6 0, which is impossible by the assumtion (5.14).

Now, we shall show a V-representation @°is a V-representation ofD. For this, we take
any nonzero vector X; Xg+1 )" 2 D, and show thatxq,; > 0. This means that the normalized
vector (x=Xg:+1;1)" is in Q% Thus, any V-representation ofQ° represents the con®. To see
that xq+1 > 0, observe that

6 0and¥V™ % 0

Xd+1 Xd+1

5y * 80andVTx 1xgn O
Xd+1

=) Xge1 > O

The last implication is valid because ifkq,1  0,VTx 0 for x 6 0 which is impossible by
the assumptions [(5.13) and((5.14). [

5.5 Examples of Dual Pairs

In Section[3.7, we introduced a few examples of polytopes. Let's loaktheir duals.

First of all, one can easily see that a-simplex is self-dual.

What is a dual of and-cube? The simple way to see is to use the centrally symmetric
cube Cube(l) whose vertex set i 1;1g". Namely,

Cubed) =convf 1;1g°=fx2R%: (e)'x 1,8 =1;:::;dg: (5.15)
The polar of Cubeg) is known as thed-cross polytope:
Cross() = fx:a'x 1;8a2f 1;1g°%g=convf g :i=1;::::dg: (5.16)

Among all ve regular polytopes in 3 dimension, the remaining duality is étween a
dodecahedron and an icosahedron.

An icosa-dodecahedron is a truncated dodecahedron, obtained from a dodecahedron tiru
cated at each vertex to the midpoint of incident edges. The numbeof facets is clearly
32 = 12 + 20, the sum of the numbers of facets of an icosahedrondaa dodecahedron.
Its dual is known as arhombic triacontahedron, which is a very special zonotope arising as
quasicrystal.
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Type Figure # Vertices | # Facets | # i-Faces
Cube(d) 2 2d 424 i
Cross(l) <A 2d 2d g 2

.~
Dodecahedron ‘6’ 20 12

L
Icosahedron (g« 12 20

<

Rhombic Triacontahedron @ 32 30
Icosa-Dodecahedron @ 30 32
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5.6 Simple and Simplicial Polyhedra

Both a 3-cube and a dodecahedron asemple polytopes and their duals aresimplicial poly-
topes.

More generally, thesimple d-polytopes are such that each vertex is contained in exactly
d facets, while thesimplicial d-polytopes are such that each facet contains exacttivertices.

Proposition 5.10 For a d-polytope P, the following statements are equivalent:
(@) P is simple.
(b) Each vertex v of P is incident to exactly d-edges.

(c) For each vertex v of P, and for any k distinct edges incident to v, there exists a unique
k-face containing the k edges.

(d) For each vertex v of P, and for any 2 distinct edges incident to v, there exists a unique
2-face containing the 2 edges.

Proposition 5.11 For a d-polytope P, the following statements are equivalent:
(@) P is simplicial.
(b) Each facet f of P contains exactly d-ridges.

(c) For each facet f of P, the intersection of any k distinct ridges contained in f is a
(d k 1)-face.

(d) For each vertex v of P, the intersection of any 2 distinct ridges contained in f is a
(d 3)-face.

5.7 Graphs and Dual Graphs

Proposition[5.1 shows that every interval of hight 2 is a diamond. Thisieans one can de ne
two types of graphs of a polytope. Thgraph of a polytopeP isG(P) = (V(P); E(P)), where

V (P) is the set of vertices oP and E (P) is the set of all edges each of which is represented as
the pair of its two vertices. Thedual graph of a polytopeP is GP (P) = (F(P); R(P)), where
F(P) is the set of facets o and R(P) is the set of all ridges each of which is represented
as the pair of the two facets containing it. By the de nition of duality, if Q is a dual of a
polytope P, G(P) is isomorphic to GP (Q).
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6 Line Shellings and Euler's Relation

6.1 Line Shelling

LetP=fx2RY:A;x 1, i=1;2:::;mgbe a polytope.P has such a representation i
it contains the origin in its interior.

A shelling of the boundary of P is a sequencd-q, F,, :::, Fn of its facets such that
([ !‘zllFi)\ Fy is a topological @ 2)-ball foreach2 k m 1.

O O
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Figure 6.1: A Shelling of a Dodecahedron

The following is a fundamental theorem on polytopes which is extretyeuseful both
theoretically and computationally.

Theorem 6.1 (Bruggesser-Mani [11] (1971)) The boundary of every polytope admits a
shelling.
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This theorem was used without proof by a Swiss mathematician Ludwigchiai (1901)
to compute the Euler characteristic (to be discussed later) of ceex polytopes. Seventy
years later, an elegant proof was given. Here is the main idea. Bregger-Mani[[11] proved
a stronger theorem where any line in general position through an @rior point of a polytope
induces a particular shelling, known as a line shelling. Figure 6.2 illustratehis.

Figure 6.2: A Line Shelling

Imagine that a given polytopeP is a planet earth and you are traveling along a generic
oriented line L starting from some interior point. The rst point z; to meet the boundary
of P is a point on a facet. Let's call this facet~;. Then you meet another pointz, on the
boundary of a halfspace spanned by a facet. Let's call this face}. If you move a little
forward from z,, you "see" only two facetsF; and F,. This travel induces an ordering of
facets as they become visible to you one by one. These facets ayeail, and in the gure
above, we have a sequence frdf up to Fg. The rests are to be ordered in a similar manner
but from the opposite side of in nity on L. More precisely, you travel from the other side of
in nity and follow the line along the orientation. From a point far from P, you see all facets
not yet ordered. Now moving towardP, some facet becomes invisible. Let's call this facet
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F,. Then another facet becomes invisible that ifs. When we reach the last facef,, all
facets of P are ordered. Such an ordering of facets can be shown to be a shglbhP.

For any point z in RY n P, the union of all facets visible fromz forms a very special
subset of the boundary. Let's all it thevisible hemisphere from z. Similarly, we de ne the
invisible hemisphere from z. The proof uses the fact that both the visible and the invisible
hemispheres are shellable.

Before giving a formal proof of Theorem 611, let us interpret the linshelling in a dual
polytope.

Consider a polytopeP in RY which contains the origin0 in its interior. Thus, its H-
representation can be of form

P=fx2RY:Ax 1g
for somem d matrix A. The polar dual of P is
P =convaiT i=1;::0;,mg;
whereA; is the ith row of A.
For a genericc 2 RY, sort the verticesAT's of the dual polytope by the linear function

c"x. Namely, we suppose
Aic>A,Cc> >A, C:

What is the meaning of this sorting for the original polytopeP ?

Geometrically, the parameterized lineL( ) = f ¢ j] 2 Rg meets each hyperplane
determined by A; x = 1 at a point, say z. Let ; denotes the parameter value at the
intersection. Thus,

z= ic and Az =1:
Consequently:

1= 1> 1=5,> > 1=, >0> 1= 41 > > 1=
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This ordering is exactly the ordering produced by the space travel(For any positive
1= ;, the smaller its value, the farther away the pointz; is from the origin. What about for
negative case?)

6.2 Cell Complexes and Visible Hemispheres

A cell complex or simply a complex K in RY is a nite set of polytopes inRY such that
(@ If P2 K andF is a face ofP, thenF 2 K.
(b) fP2K andQ 2 K, thenP\ Q is a common face oP and Q.

The dimension dim K of a complexK is the largest dimension of its members. A complex
of dimensiond is called ad-complex. The body jKj of a complexK is the union of all
members ofK . The boundary complex @Kof a complexK is de ned as the subcomplex of
K consisting of all elements irK contained in the boundary of its body.

The complex K (P) of a polytope P is the set of all faces oP. The boundary complex
@KP) is simply the set of all proper faces oP. Both the complex and the boundary
complex of a polytope arepure, i.e., the maximal members have the same dimension.

A pure complexK is called B-shellable if the maximal members can be arranged in a
sequenceFy, F, :::, Fn in such a way that the subcomplex induced by[(.,*Fi) \ Fy is
B-shellable for each 2 k m. By de nition, the complex of a O-polytope is B-shellable,
and those are the only B-shellable 0-complexes.

A pure complexK is called S-shellable if it has at least two maximal members and the
maximal members can be arranged in a sequenkg, F,, :::, Fn in such a way that the
subcomplex induced by [(¥,'F;) \ Fy is B-shellable for each 2 k m 1, and it is
S-shellable fork = m. By de nition, the boundary complex of a 1-polytope is S-shellable,
and those are the only S-shellable 0-complexes.

These notions B-shellability and S-shllability are motivated by topologal notions of
balls and spheres. However, it should be observed that a B-shellaffeshellable) complex is
not necessarily a ball (a sphere). For example, the complex consigt of three 1-polytopes
having a single vertex in common is B-shellable but not homeomorphic #oball. We can
add extra conditions to B-shellability (S-shellability) to enforce the esulting complexes to
be topologically a ball (a sphere). The following is a combinatorial anajoe of TheoreniLG.1.

Theorem 6.2 The boundary complex @K P) of a polytope is S-shellable.

Before presenting a proof, we will give a nice application of this theem. We de ne the
Euler characteristic of a complexK as
o K _
(K)= ( 1'fi(K); (6.1)

i=0

wheref;(K) is the number ofi-dimensional members oK . It is easy to see that, for any
two subcomplexesA and B of a complex, we have

(Al B)+ (A\B)= (A)+ (B): (6.2)
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Theorem 6.3 (Euler's Relation) The following statements hold.
(@) If K is B-shellable, (K)=1.
(b) If K is S-shellable, (K)=1+( 1)9mK,

Proof. Both statements are obvious if dinkK = 0. By induction, we assume that both
statements are true if dimK <d ( 1). First consider a B-shellabled-complexK . Since
K is B-shellable, itsd-polytopes can be ordered~,, F,, :::, F, in such a way that the
subcomplex induced by [( !‘leFi)\ Fy is B-shellable for each 2 k m. Whenm = 1,
clearly we have (K) = (@K +( 1) Since@Kis S-shellable by Theoremh 6.2 and has
dimensiond 1, the induction hypothesis implies

(K)= (@R+1=1+( 1) *+( 1)°=1:

Now we use the second induction om. We assume that (a) is valid iff 4(K) < m, and

then consider the caséd 4(K) = m. Since the subcompleXA induced by ( !, 'F;) is B-

shellable by the second induction, it satis es (a). We denote bB the subcomplex induced
by Frn. By using the fact that the subcomplexC induced by ( @, *Fi)\ F, is a B-shellable
(d 1)-complex, by the rst induction and (6.2), we have

(K)= (A)+ (B) (C)=1+1 1=1:

The remaining proof of (b) is straightforward as we already estabhed (a). Let K be
a S-shellabled-complex. Then, itsd-polytopes can be ordered~;, F,, ::: F, such that
the subcomplex induced by [(“,'F;) \ Fy is B-shellable (S-shellable, respectively) for each
2 k m 1 (k= m). Note that the subcomplexA induced by ( ™, F;) is B-shellable
and satis es (a). The subcomplex induced by, is also B-shellable and satis es (a). The
subcomplexC induced by (2, 'Fi)\ Fn is a S-shellable ¢ 1)-complex, by the rst
induction and (6.2), we have

(K)= (A)+ (B) (C)=1+1 (1 ( 1*H=1+( 1)

This completes the proof.
[

Of special interest are topological properties of visible and invisibleemispheres of a
polytope P. Please recall that for any pointz in general position inRY n P, the union of
all facets ofP is the visible hemisphere from z, denoted by vi(P; z). Similarly, we de ne the
invisible hemisphere from z, denoted by iv(P; z).

Theorem 6.4 Let P be a d-polytope in RY for d 1 and let z be any point in general
position in RYnP. Then the two subcomplexes of K (P) induced by the visible hemisphere
Vi(P; z) and the invisible hemisphere iv(P; z) from z are B-shellable.

Proof. We use induction ond. By inductive hypothesis, we assume that (*) the visible
hemisphere viP; z) and invisible hemisphere ivP; z) from z induce B-shellable subcomplexes
whend <k, with k 2. The statement (*) is obvious ford = 1.
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Now we try to show that (*) is true for d = k. We take an oriented lineL through z
in general position which intersects the interior oP, and let z;, z,, ..., z,, be the distinct
intersections ofL and the hyperplanes spanned by the facets,, :::, Fy,. Without loss of
generality, the ordering is the one obtained by the space travel dn

We rst show that the visible hemisphere viP; z) induces a B-shellable subcomplex. The
point z is betweenz and z,; forsome 1 i< m. Ifi =1, vi(P;z) = F; and thus
obviously vi(P; z) induces a B-shellable subcomplex. We use induction again, onand
assume by induction hypothesis that viP; z) induces a B-shellable subcomplex far< h
for someh 2. We consider the caseé = h. Note that vi(P;z) = vi( P;z) [ F;, where
Vi(P; z) induces a B-shellable subcomplex by the inductive hypothesis. Nowe claim that
Vi(P;z)\ F; induces a B-shellabled 2)-subcomplex. This is true because this set is in
fact the visible hemisphere ViE;; z) from z in the (d 1)-dimensional space spanned by
Fi. SinceF; isa (d 1)-ball and vi(P;z)\ F; induces a B-shellable subcomplex, \R( z)
induces a B-shellable subcomplex. Essentially the same argumentvgtdhat the invisible
hemisphere ivP; z) induces a B-shellable subcomplex.

This completes the double induction proof. | |

Proof. (of Theorem[6.2) By de nition, the boundary complex of any 1-polytpe is S-
shellable. We assume by induction tha@HKP) of any polytope of dimensionk 1 or less
is shellable. Consider ank-polytope P. Let F be a facet ofP, and let z be a point from
which F is the only visible facet ofP. This means that iv(P; z) is a subcomplex of@KP)
induced by all facets ofP exceptF. By Theorem[6.4, ivP; z) is B-shellable. We claim that
any shelling ordering of ivP; z) with F appended at the end is a shelling of i¥;z). For
this, we only need to show that@KF) is S-shellable. Sincé= has dimensionk 1, this
follows from the inductive hypothesis. This completes the proof. | |

6.3 Many Dierent Line Shellings

The proof of shellability of polytope boundaries using the notion of linehelling provides
many di erent ways to shell a polytope boundary. The choice of a lines restricted only
by the two conditions (1) it has to intersects with the interior of thepolytope, (2) it must
intersects the hyperplanes spanned by the facets at distinct psn

Proposition 6.5 The boundary of every polytope admits a shelling Fy, Fy, :::, F, with any
one of the following prescribed conditions:

(a) both F; and F,, can be prefixed arbitrarily.
(b) all facets incident to a given vertex can be ordered earlier than any other facets.

(c) all facets incident to a given vertex can be ordered later than any other facets.
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7 McMullen's Upper Bound Theorem

7.1 Cyclic Polytops and the Upper Bound Theorem

The moment curve in RY is the image of the real spac® by the function m(t) de ned by
m(t) ;= (t;t% 3T (7.1)

The function m( ) is thus a parametric representation of the moment curve.

A cyclic polytope is the convex hull ofn (> d) distinct points on the moment curve,
that is, convf m(ty); m(tz);:::; m(t,)g for somet; <t, < <tpn. The following is a basic
property of the moment curve.

Proposition 7.1  Any (d+ 1) distinct points on the moment curve m(t) are a [nely inde-
pendent.

Proof.  Supposem(t;); m(t);:::; m(ty+1) are a nely dependent for somet; <t, < <
tg+1 . Then they must lie in some hyperplane, and thus there is a linear edian

At aXyt aXy + agXg =0
satis ed by all m(t;)'s. It follows that the polynomial equation
ag+ agtt+ at?  +at?=0

is satis ed by (d+ 1) distinct values of t, which contradicts to the fundamental theorem of
algebra. | |

Proposition [Z.1 implies that the cyclic polytope of; n) is a simplicial polytope and its
dual is a simple polytope.

We will see that for any xed d and n, its combinatorial structure is unique. Thus, we
will denote anyone of them by of; n), and their duals by c (d; n).

McMullen's upper bound theorem is one of the most important theonas in the theory
of convex polytopes.

Theorem 7.2 (McMullen's Upper Bound Theorem [38] (1970)) For any fixed d and
n, the maximum number of j -faces of a d-polytope with n vertices is attained by the cyclic
polytope c(d;n) for allj =0;1;:::;d 1. Equivalently, for any fixed d and n, the maximum
number of j -faces of a d-polytope with n facets is attained by the dual cyclic polytope ¢ (d; n)
forallj =0;1;:::;d 1

There is an explicit formula forf;(c(d;n)) for j = 0;1;:::;d 1. The following gives
essentially a half of these formulas.

Lemma 7.3 Foranyd Oandn d+1,
@ fj i(c(d;n)= [ ,for0 |

NI

(b) f(c(dn)= S ,for & Kk d.
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Proof. By duality, two statements (a) and (b) are equivalent. Let's provea).

LetO | g . Take the rst j points m(t;); m(t2);:::; m(tj), and consider the hyperplane
h determined by

o+ X1 + + agXq =0; (72)

where the coe cients g's coincide with those in the polynomial

p(t) :i=ap+ agt+ +agt! I (t )% (7.3)
Note that the assumption]j g implies that the polynomial p(t) has degree at mostl.
Observe that h contains all the pointsm(t;) for i = 1;:::;j. Furthermore, the remaining
points m(t;) for i = j +1;:::;n are strictly on the positive side of the hyperplane. This
means that cond m(ty);:::;m(t;)g is a face ofP. Since the above discussion works exactly
the same way if we take any points, everyj points fromfm(t,); m(ty);:::; m(t,)g determine
a( 1)-face. | |

Lemmal7Z.3 implies an interesting property of the cyclic polytope. Nameif d 4, then
every pair of vertices forms an edge. This means that the graph ofd; n) is a complete
graph ford 4. This is not very intuitive because this phenomenon does not occur the
3-dimensional space.

The proof of Lemmal[7.B gives some ideas on how to determine the facef c(d;n).

or not it de nes a facet is thus equivalent to whether or not all the emaining points are on
one side of the hyperplane. This turns out to be quite easy to chettirough a combinatorial
condition, known asGale’s evenness condition.

Exercise 7.1 Find a necessary and su cient condition for a set ofl points m(t;,), m(t;,),
.11, m(t;,)g to determine a facet of the cyclic polytope.

LemmalZ.3 gives essentially a half of thk-vector of the cyclic polytope. Yet, by using
the fact that it is simplicial, the remaining information on the f -vector will be shown to be
determined uniquely.

7.2 Simple Polytopes and h-vectors
To establish the Upper Bound Theorem, Theorer 7.2, we shall protlee dual statement:

For any xed d and n, the maximum number ofj -faces of ad-polytope with n
facets is attained by the dual cyclic polytope €d;n) forall j =0;1;:::;d 1.

We have two basic steps.The rst step is to show that it is su cient to consider only
simple polytopes as maximizers of the number pffaces, for a xed number of facets. More
precisely, we have:
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Theorem 7.4 For any d-polytope P with n facets in RY, there exists a simple d-polytope P°
with n facets such that f;(P) f;(P9 forallj =0;1;:::;d 1.

Proof. We only have to argue that a small perturbation of each inequality deing P
does not decrease the number pffaces. We leave the proof to the reader. Use Theorém 3.14
and analyze how a face changes as an inequality gets perturbed shgtoward enlarging
the polytope. |

The second step is to show that among all simpled-polytopes with n facets, the dual
cyclic polytope c(d; n) maximizes the number of -faces for allj =0;1;:::;d 1.
For the rest of this section,

(*) we only consider simpled-polytopes with n facets.

We denote by (d;n) the set of all simpled-polytopes inRY with n facets.

For any P 2 (d;n), consider a linear programc’ x subject tox 2 P. Assume thatc
is generic so that no edge d? is parallel to the hyperplane given byc"x = 0. Thus, each
edge ofP gets oriented toward the vertex of higher objective yalue, and éresulting LP
orientation G (P) of the graph G(P) is well-de ned. In particular, G(P) is a directed graph
with the unique sink (mfa\ximizer) vertex and the unique source (minimer) vertex.

Now, we denote b}h*{(G (P)) the number of vertices of indegreé, for eachk = 0 ;Il; o !

Clearly, ho(G(P)) = hq(G(P)) = 1. We shall eventually write h,(P) instead of h (G (P)),
as we will see below that this number does not depend orat all.

Lemma 7.5 For any polytope P 2 (d;n) and any generic ¢ 2 RY, the value hk!(G(P))
depends only on P, and in particular, it does not depend on c. Thus, it can be denoted as
he(P).
Proof. Let P be a polytopeP 2 (d;n) and take a genericc 2 RY. We denote by F; V)
a pair of ak-faceF of P and a vertexv on F which is the unique sink onF. It is clear that
the number of such pairs ; v) is the number ofk-faces,f(P).

Now, x a vertex v of P and x k. The number of such pairs [f;v) can be counted by
using Proposition[5.1D. Namlely, there are exactly, k-faces incident tov whose sink isv,

wherer is the indegree ofv in G(P). Now ranging v over all vertices, we have

xd
hr!(G(P)) K = fx(P), fork=0;1:::;d: (7.4)

r=0

Now the system of linear equations can be written using a matrix andegtors as

2. d32h3 2, 3

o9 g 0 0

o ; ‘? ¢ 4 8h, f,

0O 0 - : ‘7 81

0O 0 0 ¢ ¢ sehg T afg (7.5)
0 O o . : :

0O 0 0 0 O d  hy fq
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The matrix on the LHS is obviously nonsingular, because it is upper tngyular and the
diagonal entries are all 1's. This means that;'s are determined uniquely byf;'s, and thus

h;'s are independent oft. This completes the proof. |
There are di erent ways to solve the equation[{7]5) in terms of thd-vector h(P) :=
(ho; hy;:::5hg). The resulting formula for h in terms of f is given by
xd ok
hi(P) = ( 1k i fx(P), fori=0;1:::;d: (7.6)
k=0

This together with Lemmal[7.3 provides us with simple explicit formulas foa half of the
h-vector of the dual cyclic polytope.

Lemma 7.6
i

hi(c (d;n)) = g i

fori = dd=2e;:::;d: (7.7)
Proof. Substitute f(P) in (Z.8) with the explicit formula for f¢(c (d;n)) in Lemmal[7.3

(b). Exercise. |

The remaining part of the h vector comes for free, as we observe that thevector is sym-
metric, namely, by the de nition of h;,

hi(P)= hg i(P); fori=0;1;:::;bd=2c; (7.8)

where the RHS counts the LHS using thé-vector with the reversed orientation by the
vector c. These equations, expressed in terms ofvector via (7.6), are known as the
Dehn-Sommerville Relations.

Theorem 7.7 (The Dehn-Sommerville Relations) Every simple d-polytope P satisfies
the following equations.

x k k X k d k ; R T .
( D . f(P)= (1) . fw(P), fori=0;1;:::;bd=2c: (7.9)
k=i : k=d i d :
More explicitly, the first two equations are
( D (P)= fq(P)=1; (i.e. Euler’s Relation); (7.10)
k=0
fi(P)+2f2(P) 3fa(P)+ +( 1)da(P)= fu 1(P)+ da(P): (7.11)

The equation (7.5) shows that eaclf; is a nonnegative combination of;'s. Therefore,
the following is a strengthening of the Upper Bound Theorem, sayintpat the h-vector is
component-wise maximized by the dual cyclic polytope.



IP (Fukuda) v.2015-02-14 51

Theorem 7.8 (A Strengthened Upper Bound Theorem) For any simple d-polytope
P with n facets the following inequalities hold.

hi(P) hi(c (d;n)), fori=0;1;:::;d: (7.12)

Proof. Let P be a simpled-polytope with n facets. The claimed inequalities are trivial
fori =0 and i = d. By the symmetry of the h-vector, we only need to show

n i

he) he @ T

fori = dd=2e;:::;d:
We use induction oni but with decreasing values. Suppose the theorem is valid for k+1
(k < d), and consider the case = k.

We claim two inequalities forh-vectors. First we observe that for any faceE of P and
for any i,

hi(F) hi (P): (7.13)

This is valid because we can select a genecisuch that all the vertices inF take the object
value higher than any other vertices ofP. Note that the values h;(F) and h;.; (P) are
invariant over choices ofc. Secondly, we have

X hi(F)=(i+1)h(P)+(d i)hi(P): (7.14)
F

The summation in LHS is over all facetd= of P. This equation can be veried once we
observe that every vertex of a facet with indegree in the facet has indegree ori + 1 in
P. If it has indegreei in P, there are exactly @ i) facets containing it that preserve the
same indegree. If it has indegreiet 1 in P, there are exactly ( +1) facets containing it that
decrease its indegree by one.

Now we look at the inductive step fori = k. By the two inequalities (7.14) and [Z.1B),
we have

X
(k+1Dhe (P)+(d  K)he(P)= h«(F) nhygsq (P): (7.15)
F
This implies
(d Khg(P) (n k 21hg1(P); orequivalently, (7.16)
he(P) %hku(P): (7.17)

Now we use the inductive hypothesis for= k + 1 to get

n k 1 n k 1

k 2 n k 1
th+1(P)

= : (7.18)

n
h(P) d kK d k 1 d k

This completes the proof. | |
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While the h-vector of the cyclic polytope is extremely simple, itd -vector is rather
complicated. The formula can be written explicitly using [(75), [(7]6) at (Z.8). We here
present a formula forf o(c (d; n)) which is quite simple.

Theorem 7.9 The maximum number of vertices a d-polytope with n facets can have is
realized by the dual cyclic polytope and is

n d d=2e L bd=2c 1

fo(c (i) = ; g

(7.19)
By duality, this number coincides with f4 1(c(d; n)).
Proof.  Left to the reader. Hint: use the identity:

n n+1 n+s n+s+1
+ + +
0 1 S S
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8 Basic Computations with Polyhedra

Consider a system ofm linear inequalities ind variables
Ax b: (8.1)

An inequality Aix b is called redundant in (8.1) if the set of solutions to [8.1) stays
unchanged when the inequality is removed from the system. An egalgnt condition is that
there is nox satisfying Aijx > b; and Ajx b forallj 6 i.

In this section, we study basic problems in polyhedral computatiorush as the following
two problems:

Problem 8.1 [Single H-Redundancy]
Input: A rational matrix A 2 Q™ 9, a rational vectorb2 Q™ and an indexk 2 [m] :=

Output: Yes if Akx b is redundant inAx b, No otherwise.

Problem 8.2 [H-Redundancy Removal]
Input: A rational matrix A 2 Q™ 9, a rational vectorb2 Q™
Output:  An equivalent subsystem ofAx b which is free of redundancies.

The second problem can be solved by solving the rst problem for damequalities, but
interestingly, one can do better than that by dynamically selectingte ordering of inequalities
to be processed.

The gure above illustrates the H-redundancy problem. The blue ggon is the feasible
regionP = fx : Ax bg. The output of the computation is the set of inequalities indicated
in red that are essential in the H-representation. Often, the sizef output is much smaller
than the size of input.

Naturally one can pose the same problems for V-polyhedra. It tusnout that those
problems can be reduced to the H-redundancy problems. We will dbat the H-redundancy
problems can be reduced further to the H-redundancy problemerfthe special case of H-
cones. These transformations are discussed in Secfion 8.4.

Here is a closely related problem that should be solved before the lddRindancy Removal
is solved.
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Problem 8.3 [H-Dimension]
Input: A rational matrix A 2 Q™ 9, a rational vectorb2 Q™
Output: The dimension of the polyhedrorP = fx : Ax  bg.

A typical algorithm for this computes not only the dimension of, but also a relative interior
point of P, see Section 8]3. One can then embed the polytope in a lower-dimenalspace
so that P becomes full-dimensional.

These problems are much easier than other problems in polyhedrahgputation such as
the representation conversion between V- and H-representai®and computing the volume
of a polytope. In fact, the problems discussed in this section are @lblynomially solvable
in the size of input.

The main goal of this section is to present many algorithms which ar@nhonly polynomial-
time but also best possible in terms of the number of LP's that must bsolved, or of the
size of LP's that must be solved when the number of LP's to be solved ied.

For this purpose, we use the notion of LP complexity, where we cauthe number of
LP's and their sizes as a complexity measure. This makes sense onlyewlsolving LP's
dominates other computations such as solving systems of linear atjans of sizes of same
order. This applies very well to all problems in this Section.

We denote by LP@;m) the time necessary to solve any LP withd variables and m
inequality constraints: maxc'x subject to Ax b, where A is m d rational matrix.
We consider |LP@; m) is an upper bound time measured by big-ol©® notation, such as
O(md?3) or O(e 9°9M). Unlike the usual way to measure the LP complexity using the binary
encoding lengthL of input, we simply ignoreL. The main reason is that practically all of
implementations of LP algorithms depend hardly or., but essentially and polynomially on
d and m. Further more, we are mostly interested in the case when is much larger thand
and at least as large as@ This practical observation leads to that

Assumption 8.4 We assume that LP(d; m) satisfy the following assumptions.
(@ LP(d;m)=LP(d+ c;;m+ ¢y) for any constants ¢; and c,.
(b) LP(d;m) is at least of order md?, that is, ( md?).

The rst assumption is based on the fact that LP is solvable in a polyrmoial time. The
second assumption is based on the fact that solving a system of linggequalities is at least
as hard as solving a system of linear equations of the same size (upctmstant factor),
and the Gaussian elimination has (md?) complexity. This second assumption will be used
throughout this chapter to argue that the time to solve a linear eqality system or to compute
a rank of anm d matrix is dominated by LP(d; m).

8.1 Single H-Redundancy Checking

Here we show that Probleni8]1 is linearly equivalent to the linear progmaming. The one
direction is rather obvious, that is, the Single H-redundancy cherrlg can be done by a single
LP of the same size.
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Proposition 8.5 Problem B.1] has No answer if and only if the following LP with | =[m]:

Test(l, k): maximize  AgX
subject to
Ax h: 821 nfkg (82)

ArX h +1
has an optimal solution whose optimal value is strictly greater than k.

Note that the reduction is not only polynomial but linear. Surprisingly there is a linear
reduction from the linear programming (the linear feasibility) to the $hgle H-redundancy.

Proposition 8.6 The system Ax b is consistent if and only if a special case of Problem
8.1
is the inequality Xxo O redundant in Ax bX,and xo O (8.3)

has No answer.

Proof. Suppose thexy 0 is redundant. This is equivalent to the statement that
there exists no K; Xg) such that Ax b X and xo > 0. This in turn is equivalent to the
inconsistency ofAx  h. | |

We have shown the linear equivalence of the Single H-redundancy dtieg and the
LP. This implies that any redundancy checking algorithm is at least asqwerful as an LP
algorithm.

In the next section, we will see that removing all H-redundancies rabe easier than
solvingm LP's of size @; m) that takes time m LP(d; m) if the system is highly redundant.

8.2 H-Redundancy Romoval

Here we discuss the problem of removing all redundancies from arréppresentation of a
polyhedron, i.e., Problen{ 8.

We shall assume that the input of Probleni 812 is \clean" in the sensedhthe underlying
polyhedronP = fx : AXx  bg is full-dimensional and no inequality is a positive multiple of
another one. This assumption can be met if the preprocessing is dpnamely, by embedding
the polyhedron in an appropriate subspace. This part will be discuss in Section 8.8.

As we have seen in Sectidn 8.1, removing all redundancies can be dan@ LP(d; m)
time. Can one do better than this? Here we present an algorithm due Clarkson [15] which
runs much faster than the naive algorithm when the numbes of nonredundant inequalities
is small relative tom.

Let Ax b be an input system. We assume that a poinz 2 QY is given satisfying
Az < b, an interior point of the feasible regionP = fx : Ax bg. At the general stage of
the algorithm, we have already detected a row index sétsuch that the inequality Aix b
is nonredundant forAx b, for eachi 2 |. Let ] be an row index which is not tested yet,
i.e. j 2 [m]nl. Clarkson's algorithm either detectskth inequality is redundant or nds a
row indexj 2 [m]nl such that Ajx B is nonredundant.
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procedure Clarksonf\,bz,l k)

begin
test whether Ayx I is redundant in Ay kgX  DBf kg
by solving the LP Test(l [f kg, k) with optimal solution x
if nonredundantthen

(cl) return (1, RayShootA,bz,x  z)) //Returns an essential index
else
(c2) return (0, k) /IReturns an redundant index
endif
end

Here, the procedure RayShoo&,bz,r) returns an indexj of a facet-inducing hyperplane
fx : Ajx = bg hit by the ray starting from z along the directionr. It can be easily

direction r for su ciently small > 0. In Figure[8.1, the dotted thick line represents the
relaxed inequality hyperplanef x : Ayx = b + 1g.

< &((1).

Figure 8.1: Clarkson's Algorithm: Left k is redundant), Right(An essentialj is found)

Exercise 8.1 Write a procedure RayShootd,bz,r) following the speci cation above. It
should be speci c enough to be implemented with high level computemiguages like C and
C++.

Here is the complete algorithm to remove all redundancies. We asseitihat an interior
point z of P = fx : Ax  bgis given.

procedure RedundacyRemovalClarksoA(b,z)
begin

setl :=;,J :=[m]

repeat
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select an indexk from J
(;j ) =Clarkson(A,bz,l k)

if =1then | :=1[f jg //lincrement the essential setl
J:=Jnfjg

until J = ;

return |

end

Theorem 8.7 The complexity of Clarkson’s algorithm to find a minimal equivalent subsys-
tem of Ax bism LP(d;s) where s is the number of nonredundant constraints in Ax b

Proof. At each step, Clarkson's algorithm either nds an row indeX to be a redundant
inequality row index or discovers a new row indekx 6 k for which Ajx Iy is essential.
Since the size of an LP solved hakvariables and at mosts + 1 constraints, the complexity
follows. Note that the complexity of a ray shooting isO(md). Since the number of ray
shooting is at mosts, the total time O(smd) of ray shooting is dominated bym LP(d;s).

[ |

8.3 Computing H-Dimension

It is often important to know the dimension of a polyhedron. When a plyhedron is a V-
polyhedron with representation, it is very easy to compute its dimesion. More precisely, if
P is a V-polyhedron for some generator matrices s matrix V andd t matrix R, i.e.,

P=fx:x=V +R; 1" =1; 0; 0g;
then the dimension ofP is easily computable, namely by the formula,

V. R

1T o 1:

dimP =rank
However, for an H-polyhedron
P=fx:Ax bg

its dimension is nontrivial to compute. Why nontrivial? It is simply becase if one knows the
dimension, one can decide whethd? is empty or not, that is the linear feasibility problem,
equivalent to LP. Then, the next question is how many LP's one has tsolve to determine
the dimension. Obviously, at least one. It is not hard to see that at ost m LP's is su cient.

In this section, we show that one can compute the dimension by solgimt mostd LP's.
As a byproduct, one also nds a point in the relative interior ofP.

The rst step is to try to nd an interior point of P. If it is successful, the dimension is
of coursed. One can easily see that the following LP will detect the full-dimensiotity:

maximize Xo
subject to
AX + 1Xg b; (84)
Xo 1

More precisely, we have three cases, depending on the outcomehef LP. Let x be an
optimal solution and let x, be the optimal value.
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Case 1: X, > 0 . In this case, an optimal solutiorx is an interior point and dimP = d.
Case 2: X, < 0 . In this case, the polyhedrorP is empty and dimP = 1.
Case 3: X, =0 . In this case, the polyhedronP is neither full-dimensional nor empty.

In case 3, we must do more computation. For that, we can make usé a dual optimal
solution (s ;t ) for the dual LP:

minimize b's + 0t

subject to
ATs = 0 (8.5)
1"s + t =1;

S 0; t 0:

By strong duality, the dual optimal value is zero. This means thas cannot be totally zero.
Let | = fi:s, > 0g. By the complementary slackness, at any feasible solutior; ko) with
Xo = 0 (i.e., at any solution x for Ax  b), every inequality in Ajx B must be tight.
We might do even further. By Gaussian elimination, we can recognizé ather inequalities
in AXx  bthat are forced to be equalities providedA;x = b. Let us mergel with these
dependent equality indices, and call if’. Now we are ready to solve another LP to nd more
implicit equalities in the remaining system. For this, letC := ', and D := [m]nC, and set
up an LP:

maximize Xo
subject to
AcX = Ix; (8.6)
ApX +1Xg b
Xo 1

At an optimal solution (x ;X,), there are only two cases because cannot be negative this
time. When x, > 0, the solutionx is a relative interior point, and the dimension ofP is

easily computed. It isd minus the maximum number of independent equalities iIA;/x = b .

When x, = 0, we do essentially the same thing as we did at the very rst stageuse the
dual optimal solution to recognize implicit equalities inAp X bb. Then extend them
with possible dependent equalities. Another LP should be solved witkxtended C and its

complementD. Since every time an LP is solved, at least one independent implicit ediya

is found. This shows that at mostd LP's will be solved until a relative interior point is
found. Thus we have:

Theorem 8.8 Problem [8.3 can be solved ind LP(d; m) time.

Exercise 8.2 (Embedding a Polyhedron) Given a pointz in the relative interior of P =
fAx  bg, explain a method to embedP to a lower dimensional space so that it is full-
dimensional there.
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8.4 Reducing the Nonhomogeneous Case to the Homogeneous
Case

We de ne the homogenization of a systemAx b as the new system with one extra non-
negative variablexg,

AX bxandxg O: (8.7)

Proposition 8.9 Let Ax b be a consistent system. An inequality Aijx Lk is redundant
in the system if and only if the corresponding inequality A;x h Xo is redundant in the
homogenization.

Exercise 8.3 Prove the proposition above. Show that the assumption thafx b being
consistent is necessary by providing a small example in whiékx b is redundant in
Ax bbut Aijx b Xq is nonredundant in the homogenization.

What we have shown above is that the H-redundancy removal fooees solves the more
general problem for polyhedra.

What about for a V-polyhedron? Can we reduce the redundancymeval for V-polyhedra
to the one for V-cones? Consider a V-polyhedron with generatoaip (V; R) whereV 2 QY S
andR 2 QY t

Py(V:R) = fx:x=V +R; 1" =1; 0; 0g:
Let v; denote thej th column of V, and r denote thekth column of R. We say a generator

v; (ry) is redundant for Py (V;R) if removing v; from V (ry from R, respectively) does not
alter the polyhedron.

Proposition 8.10 For V 2 QY S and R 2 Q% !, a generator v; (ry) is redundant for

Pv (V;R) if and only if the corresponding generator Vl’ ( r(,) , respectively) is redundant in

the homogenization
V R
1™ of

Proof. The proof is straightforward. Left to the reader. | |

Cv(R) = fx:x=R; 0g; where R =

Now, we know that both the H-redundancy removal and the V-raghdancy romoval
for cones are as powerful as those for polyhedra. Finally, we havee duality of H- and
V-redundancy removals which implies that an algorithm for one probie solves both.

Proposition 8.11 Let A 2 Q™ 9. Then, each inequality Ajx 0 is redundant in Ax 0
if and only if the corresponding generator A is redundant for Cy (AT).

Proof. Let Ajx O be redundant inAx 0. This means there exists nx such that
Aix> 0 andAjx 0 forallj 6 i. By the fgarkas Lemma (Exercisé 3]4), this is equivalent
to the existence of 0 such that AT = 4, Al ;. This is equivalent to sayingA/ is

redundant for Cy (AT). This completes the proof. |

Exercise 8.4 (Dimensionality and Linearity) Given a point z in the relative interior of
Cu(A) := fAXx 0Og, explain a method to nd a basis of the linearity space o€y (AT).
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9 Polyhedral Representation Conversion

The Minkowski-Weyl Theorem, Theoreni-319, shows that every coex polyhedron has two
representations, an H-representation and a V-representationThe associated problem of
computing a (minimal) V-representation from a H-representation mits converse is known
as therepresentation conversion problem for polyhedra.

One important characteristic of the representation conversionrpblem is that the size of
output is not easy to measure in terms of the size of input. For exaie, for ad-cube having
2d facets and 2 vertices, the H-to-V conversion has output whose size is expotiahin the
input size and the V-to-H conversion has the output size very smalélative to the input
size.

Given this diversity of output sizes, an ideal algorithm for the convsion problem must
be sensitive to the output size, as opposed to optimal for the worsase output size of a
given input size. An algorithm is calledoutput-polynomial if its running time is bounded by
a polynomial function of both the input size and the output size.

Also, we must take account of the memory footprint. Some algoriths need to store a
large amount of data in the memory, while others simply do not storengthing except the
input data and a few more. We say an algorithm igsompact if its space is bounded by a
polynomial function of the input size only.

One might call an algorithm ideal if it is both compact and output-polyromial. For
the representation conversion problem, there is no known outpptlynomial algorithm in
general. However for the special cases of various nondegengre@mpact output-polynomial
algorithms are known, typically based on the reverse-search pdigm, see Section 912.

9.1 Incremental Algorithms

In this section, we present a classical nite algorithm, known as theéouble description (DD)
method [40]. It can be also considered as a constructive proof of Mawski's Theorem, the
implication of (&) =) (b) in the Minkowski-Weyl Theorem, Theorem[3.I0. The algorithm
is not output-polynomial as it was shown by Bremner [10]. However, is extremely useful
for certain representation conversion problems, in particular, fdighly degenerate inputs.

Suppose that anm d matrix A is given, and letC(A) = fx : Ax  0g. We call any
vectorr 2 C(A) aray of C(A). The DD method is an incremental algorithm to construct a
d n matrix R such that (A;R) is a DD pair.

Let K be a subset of the row indiceE1; 2;:::; mg of A and let Ax denote the submatrix
of A consisting of rows indexed bYK . Suppose we already found a generating matrRR for
C(Ak), or equivalently (Ax;R) is a DD pair. If A = Ak, clearly we are done. Otherwise
we select any row index not in K and try to construct a DD pair (Ak+i;RY using the
information of the DD pair (A ; R). Note that K + i is a simpli ed notation for K [f ig.

Once this basic procedure is described, we have an algorithm to donst a generating
matrix R for C(A). This procedure can be easily understood geometrically and theader
is strongly encouraged to draw some simple example in the three dirs@mal space.



IP (Fukuda) v.2015-02-14 61

The newly introduced inequalityA; x O partitions the spaceR¢ into three parts:

H' = fx2RY:A x> 0g
H? = fx2RY:A; x=0g (9.1)
H = fx2RY:A x< 0g:

Let J be the set of column indices oR and let r; denote thejth column of R. The raysr;
(j 2 J) are then patrtitioned into three parts:

J* = fj2J:r;2H/g
J° = fj2J:r;2HY 9.2)
J = fj2J:rj2H; 0

We call the rays indexed byd*, J°, J the positive, zero, negative rays with respect toi,
respectively. To construct a matrixR® from R, we generate newJ*j j J j rays lying on
the ith hyperplane H? by taking an appropriate positive combination of each positive ray;
and each negative ray ;o and by discarding all positive rays.

The following lemma ensures that we have a DD paitAk +i; RY, and provides the key
procedure for the most primitive version of the DD method.

Lemma 9.1 (Main Lemma for Double Description Method) Let (Ax;R) be a DD
pair and let i be a row index of A not in K. Then the pair (Ax:i;RY is a DD pair,
where R%is the d j J9 matrix with column vectors r; (j 2 J°) defined by
JO
rjj 0

J [J°[ 3" J),and
(Air)rjo (Airjor; foreach (j;jj%23" J

Proof. Let C = C(Ak+i) and let C°be the cone generated by the matriR® We must
prove that C = C°% By the construction, we haverjo 2 C for all (j;j% 2 J* J and
C°® Cisclear.

Let x 2 C. We shall show thatx 2 C°and henceC  C° Sincex 2 C, x is a nonnegative
combination ofr;'s overj 2 J, i.e., there exist ; 0 forj 2 J such that

X = e (9.3)
j23d

If there is no positive ; with j 2 J* in the expression above thex 2 C° Suppose there is
somek 2 J* with > 0. Sincex 2 C, we haveA; x 0. This together with (©.3) implies
that there is at least oneh 2 J with , > 0. Now by construction,hk 2 J°and

Fok = (A r)rc (Aj Nrp: (9.4)

By subtracting an appropriate positive multiple of [9.4) from [9.8), v obtain an expression
of x as a positive combination of some vectors (j 2 J9 with new coe cients ; where the
number of positive ;'s with j 2 J* [ J is strictly smaller than in the rst expression. As
long as there isj 2 J* with positive ;, we can apply the same transformation. Thus we
must nd in a nite number of steps an expression ok without using r; with j 2 J*. This
provesx 2 C°% and henceC C° |
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This algorithm can be used to prove Minkowski's Theorem construcialy.

Proof.  (of Theorem 3.10 ) By Lemmal[9.1, it is su cient to show that one can nd an
initial DD pair ( Ak ; R) for someK . The trivial case is whenK = ; and C(Ax) = RY In

this case, the set of @ vectorsR = fe;; e e; ;11 €y €40 generates the spacRY by
their nonnegative combinations. (Actually, one can ndd+ 1 vectors which positively span
RY. How?) This completes the proof. | |

Here we write the DD method in procedural form.

procedure DoubleDescriptionMethod@);
begin
Obtain any initial DD pair ( Ax ;R)
while K 6 f1;2;:::;mgdo
begin
Select any indexi from f1;2;:::;mgnK
Construct a DD pair (Ak +i; R9 from (Ax;R)
[* by using Lemma [©.1 */
R:=R%° K :=K+i;
end
Output R
end.

The DD method given here is very primitive, and the straightforwardimplementation is
not quite useful, because the size df increases very fast and goes beyond any tractable
limit. One reason for this is that many (perhaps, most) vectors;; o the algorithm generates
(dened in Lemma[9.1), are unnecessary. To avoid generating ratlant generators, we
store and update the adjacency of generators. Such a re nemiean reduce the size of the
output drastically.

B
& A
", $%&' !4;() $%&*'

o

-

+,-%./01%123456%7,%8,9,./: ¢
3950%0;3.%/6</=,9:%>/.1%! %

?&@3)

Figure 9.1. The Double Description Algorithm
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Figure depicts a general step of adding theh inequality with a re ned double
description algorithm. The polytopes should be considered as a ceic§on of 4-dimensional
pointed cones with some hyperplane so that each vertex repretseone dimensional extreme
ray starting from the origin.

Two generators are said tadjacent if the common set of active constraints is maximal
among all pairs of generators. This means that the line segment c&tting a adjacent pair
meets the new hyperplands; = fx : Ajx = 0g at a point lying on a minimal face of the cone
C(Ak+i). Itis easy to see that such a point must be in any V-representatio

The double description algorithm at the ideal form not generating gnredundant gener-
ators is still not easy to analyze. The main problem is that the size of @-representation
of intermediate cone is not easy to estimate. The size also depen@swily on the insertion
order of constraints.

Here are somewhat surprising behaviors of the re ned double dggmn method with
respect to di erent insertion orders. In the gure below, the inpu is (the homogenized cone
of) a 15-dimensional polytope with 32 facets. The output is a list of6GB vertices. It is
important to note that the conversion ishighly degenerate , meaning that the number of
active inequalities at each output vertex is much higher than the dinmesion.

We consider the ve di erent orderings of the inequalities. The ordeng lexmin is simply
sort the rows of A by lexicographic ordering, comparing the rst component rst, then the
second in case of tie, and the third, etc. The orderinghaxcuto  (mincuto )is a dynamic
ordering in which at each iteration the next inequality is selected to mamize (minimize)
the sizejJ*j. The lexmin is a sort of shelling ordering which appears to perfom theeft
among all orderings tested.

Size INTERMEDIATE SIZES FOR CCP6

i / maxcutoff
1500 |
mincutoff
1250 | random /
| A
1000 AN
750
500
250 |
oy Wy - W
ﬁ'f lteration

| 20 22 24 26 28 30 32

Figure 9.2: Comparison of Intermediate Sizes for a Degenerate hp
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A more striking comparison is given below where the input is a 10-dimeosal cross
polytope with 21° facets. The output is a list of 20 vertices. The highest peak is attaial
by maxcuto ordering, following by random and mincuto . The ordering lexmin is the best
among all and the peak intermediate size is less than 30. Note thatetlgraph of lexmin is
too low to see it in the gure below.

Size
Maxcutoff

30000 ¢

25000 ¢

Random

20000 ¢

15000 |

10000 |

5000 Mincutoff

200 400 600 800 1000 Iteration

Figure 9.3: Comparison of Intermediate Sizes for a Highly Degenrdtgput

9.2 Pivoting Algorithms

One can design pivoting algorithms to visit all vertices of a convex pdbpe systematically.
The idea is quite simple. The graph of a convex polytope is connecteahd in fact d-
connected if the polytope isd-dimensional, due to Balinskil[7]. Thus, one can trace the
graph systematically until no new vertex can be found.

R
X
++++++ &

A polytope P and its graph (1-skeleton)
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Historically, there are many pivoting algorithms proposed by Balinskj6], Murty [42], Dyer
and Proll [19], etc. The weakness of pivoting algorithms is that whermé polytope is degen-
erate, i.e., non-simple, pivoting may not be able to trace the graph afpolytope e ciently.
Typical way to resolve degeneracy is a symbolic perturbation of cstnaints which may create
an exponentially large number of new extreme points. Under the ndageneracy assumption
that the number of active constraints at each vertex is exactly, the algorithm due to Dyer
and Proll [19] is an output-polynomial algorithm. Yet, it must store dl visited vertices in
memory and thus is not a compact algorithm.

In this section, we present a compact output-polynomial algorithrfor the nondegenerate
case, based on the reverse search technique due to Avis and Fl&u

The main idea is to reverse the simplex method from the optimal vertein all possible
ways. Here the objective function is set to any generic one so thtite optimal vertex is
unique and no edge of the polytope is parallel to an objective contou

min x1 + X2 + x3

Also, another important thing is to make sure that the simplex algoritm is nite and selects
a next pivot uniquely at each vertex. This can be achieved, for exae, by employing the
minimum index rule (Bland's rule). Under these, the edges used by the ned simplex
method form a directed spanning tree of the grapls(P) of a polytope P rooted at the
optimal vertex. We will see that the resulting algorithm enumeratesll f, vertices in time
O(md ) and O(md)-space under nondegeneracy when the input H-polytope is given im
inequalities ind variables. Thus, it is compact and output-polynomial.

For a formal description, let us de ne two functions. A nite local farchf for a graph
G = (V; E) with a special nodes 2 V is a function: V nfsg! V satisfying

(L1) fv;f(v)g2E foreachv 2 V nfsg, and
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(L2) for eachv 2 V nfsg, 9k > 0 such thatf*(v) = s.

For example, letP = fx 2 RY: Ax bg be a simple polytope, anct"x be any generic
linear objective function. LetV be the set of all vertices oP, s the unique optimal, andf (v)
be the vertex adjacent tov selected by the simplex method which selects a pivot uniquely if
v is not the optimal vertex.

A adjacency oracle or simply A-oracle Adj for a graph G = (V;E) is a function (where
a upper bound for the maximum degree db) satisfying:

(i) for each vertexv and each numberk with 1 Kk the oracle returns Adj{; k), a
vertex adjacent tov or extraneousnull (null),

(i) if Adj(v;K) = Adj( v;k% 6 0 for somev 2 V, k and k® then k = k°,

(i) for each vertexv, fAdj(v; k) : Adj(v;k) 6 0;1 Kk g is exactly the set of vertices
adjacent tov.

For example, whenP = fx 2 RY: Ax by is a simple polytope, letV be the set of all
vertices ofP, be the number of nonbasic variables and Adj( k) be the vertex adjacent to
v obtained by pivoting on the kth nonbasic variable atv.

Now we are ready to describe a general reverse search algorittomgenerate all vertices
of the underlying graphG assuming that the two functionsf and Adj are given.

procedure ReverseSearch(Adjs,f);
v:=s;j :=0; (* j: neighbor counter *)
repeat
while j< do
j =]+
(r1) next := Adj( v;j);
if next 6 null then
(r2) if f(next) = vthen (*reverse traverse *)
v:=next;j =0
endif
endif
endwhile ;
if v6 sthen (* forward traverse *)
(f1) u:=v;, v:i="~(v),
(f2) ] :=0; repeat j:=j+1untl Adj(v;j)= u(*restorej *)
endif
until v=sandj =

We can evaluate the complexity of reverse search above as folloBglow we denote by
t(f ) and t(Ad)) the time to evaluate the functionsf and Adj, respectively.

Theorem 9.2 Suppose that a local search (G;s;f) is given by an A-oracle. Then the time
complexity of ReverseSearch is O( t (Ad))jVj+ t(f)JEj).
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Proof. It is easy to see that the time complexity is determined by the totalitne spent
to execute the four lines (rl), (r2), (f1) and (f2). The rst line (rl) is executed at most
times for each vertex, and the total time spent for (rl) iSO( t (Adj)jVj). The line (r2) is
executed as many times as the degreleqv) for each vertexv, and thus the total time for
(r2) is O(t(f )jEj). The third line (f1) is executed for each vertew in V nfsg, and hence the
total time for (f1) is O(t(f )(jV] j Sj)). Similarly, the total time for (f2) is O( t (Adj)(jV))).
SincejVj j Ej, by adding up the four time complexities above, we have the claimedstét.
|

Corollary 9.3 Suppose that a local search (G;s;f) is given by an A-oracle. Then the time
complexity of ReverseSearch is O( (t(Adj) + t(f))jV]j). In particular, if , t(f) and t(Adj)
are independent of the number jVj of vertices in G, then the time complexity is linear in the
output size jVj.

Proof. The claim follows immediately from Theoreni_9]2 and the fact thatjE] jVj.
[ |

One can improve the complexity of reverse search algorithms by éoqting special struc-
tures. We give the best known complexity of reverse search foretihepresentation conversion
for convex polytopes without proof, see [4] for details.

Theorem 9.4 There is an implementation of reverse search algorithm to enumerate all
vertices of a nondegenerate H-polytope P = fx : Ax  bg in time O(md ) and space O(md),
where A2 Q™ 9 b2 Q™ and f is the number of vertices of P. In particular, it is a compact
output-polynomial algorithm for nondegenerate inputs.

There are many applications of reverse search in geometry and domatorics, seel|5].

Finally, what is the di erence between reverse search and depthst search? The quick
answer is: reverse search is a memory-free search while deptt-gearch must store all nodes
visited so far to distinguish those vertices from the rest. In othewords, reserve search is
depth- rst search applied to a unique spanning tree of the graphedned by local search
function f .

9.3 Pivoting Algorithm vs Incremental Algorithm

Pivoting algorithms, in particular the reverse search algorithm (Irsrslib [2]), work
well for high dimensional cases.

Incremental algorithms work well for low (say, up to 12) dimensionaases and highly
degenerate cases. For example, the codes cdd/cddlib! [22] andt@dl3] are imple-
mented for highly degenerate cases and the code ghull [8] for layp to 10) dimensional
cases.

The reverse search algorithm seems to be the only method that Esavery e ciently
in massively parallel environment.

Various comparisons of representation conversion algorithms amdplementations can
be found in the excellent article[[3] by Avis, Bremner and Seidel.
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10 Hyperplane Arrangements and Point Con gurations

In Sections[5[6 and17, we studied the combinatorial structure obovex polytopes. In this

section, we look at not only polytopes but also the dissection of thehwle space by a set of
hyperplanes which induces a polyhedral complex. Formally, it is knowas an arragement of
hyperplanes and its dual structure is known as a con guration ofgnts or vectors.

10.1 Cake Cutting

An intuitively appealing way to study the dissection of the plane by a sef lines is through
cake cutting. Just consider a round cake from above (i.e, a 2-dinsonal disk), and try to
cut it by a knife a few times. With m straight cuts, how many pieces can one produce? Of
course, it depends on cut intersection patterns, as one can sed-igure[10.].

L Ter s

Figure 10.1: Cake Cutting Problem

Let us denote byp,(m) the maximum number of pieces one can produce log cuts in
2D. Clearly, p2(0) = 1 and p,(1) = 2. It is not hard to give an explicit formula for this by
looking at a simple recursive formula. We can easily see that if theth cut intersects with
the previousm 1 cuts at distinct points (in the interior of the cake), then it genergées
additional m pieces. It is obvious that this is an upper bound of the number of pieces one
can generate.
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Is this upper bound attainable? We argue that this is always attaindb by placing
cuts properly. A 2D cake cutting with m cuts is de ned to be nondegenerate if any two
distinct cuts intersect in the interior of the cake and no three distiot cuts have a common
intersection. For anym, nondegenerate cuts exist. Just placen cuts so that no two cuts
are parallel and no three cuts intersect. If some two cuts do nottersect in the interior of
the cake, just dilate the cake (centered at the origin) without chaging the cut placements.
If the dilation is large enough, all intersections of the lines will be pladeinside the cake.
Then, shrink the whole space so that the cake becomes the origiséae.

This observation leads to a simple recursion:

P2(m) = p(m 1)+ m (10.1)

which implies

(m+1)m,

5 (10.2)

p2(m) = p(0)+1+2+ +m=1+

Now we go up to one higher dimension. The cake looks like a 3-dimensidrell, and we

try to cut out the largest number of pieces withm cuts. We now imagine how a \watermelon™

can be dissected into pieces by a knife into pieces, see Figure]10.2cydoes not go through
the center although the gure shows such a case.)

"'\
N

Figure 10.2: 3-Dimensional Cake Cutting Problem

Let us denote byps(m) the maximum number of pieces one can produce by cuts
in 3 dimension. Can one write a simple recursive formula fgs(m)? Yes, it is possible,
once one notices that the cut section amth cut in the 3D cake could look like a 2D cake
cutting at (m  1)st step, as long as thenth cut intersects with the previous (n 1) cuts
at distinct lines. A key observation is that the number of 2D pieces ahe cut section is
exactly the increment of the number of pieces bgnth cut. Thus, when the mth cut section
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is nondegenerate, the increment is largest and thus the obseieat leads to the recursion

ps(mM) = ps(m 1)+ p(m 1) (10.3)
m(m 1)

2
X 1)

ps(m 1) +1+

p3(0) + m+

[uy

1 1 1
=1+ m+é(m+1) m+é m Zm(m+1): (10.4)

xXn
(Recall the identity: 2= %(m +1)(2m+1)m)
i=1

We have two explicit formulas, one for 2D[(10]2) and the other for 3[L0.4). Can we guess
a general formula forpg(m)? Well, not quite easy to guess from what we have. But, it is
much easier once we rewrite the two equations in the following form:

p (m) _ m + m + m
(M) =
0 1 2
(10.5)
(m) _ m + m + m + m
Ps 0 1 2 3

Exercise 10.1 Verify the correctness of the equationd{10.5).

Now, we are ready to prove the general cake cutting theorem.

Theorem 10.1 The number pg(m) of the maximum number of pieces dissected from the
d-dimensional ball by m (hyperplane) cuts is given by

xd
pmy =~ T (10.6)
i=0

Proof.  We prove the correctness of the formula and the fact that the #hvalue is attained
by any nondegenerate cake cut, by induction oth Here, we say al-dimensional cake cutting
of a d-ball (cake) with m cuts is de ned to benondegenerate if any d distinct cuts intersect
in the interior of the cake and no (I + 1) distinct cuts have a common intersection. The
formula is correct ford = 2 and attained by any nondegenerate cutting. Consider any
unknown cased assuming that the formula is correct for any smaller dimension. Firgif all,
m = 0, the formula py(m) is correct that is 1. Here we use second induction an. Consider
any unknown casem assuming that the formula is correct for any smaller values ofi. By
extending the recursion[(10]3), we have

Pa(m) = ps(m 1)+ pg 1(Mm 1) (10.7)
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By induction hypothesis, one can apply the formula to the RHS and weave:

(m) = m 1 Lm 1 Lo m 1
Plm)=" ¢ 1 d
m 1 m 1
+ + o+
0 d 1
Finally, since ™ 11 = 0, the last equation above leads to
(m) = X mo1 L, m
Patm) = K Kk 1
k=0
X m
= ‘ (10.8)
k=0
This completes the proof. |

10.2 Arrangements of Hyperplanes and Zonotopes

Cake cutting is a less formal way of presenting the mathematical tion of arrangements of
hyperplanes inRY. A nite family A = fh; :i =1;2;:::;mg of hyperplanes inRY is called
an arrangement of hyperplanes.

hs
hy hy

We are mostly interested in combinatorial structures underlying hyerplane arrange-
ments. For this, it is convenient to de ne the partition of the spaceR? into three sets:

hi = fx: A x<bg; (10.9)
h?=fx:A x=hg; (10.10)
h, = fx:A; x>b;g: (10.112)
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hs

no,

& (++++0)
(0-0-+)

There is a natural way to associate each point in the spaceRY with the sign vector
(x)2f ;0;+g™ de ned by:
8
< + if x2h'
(xX)i=_ 0 ifx2h° i 2 E:
' if x 2 h,

The set of points with a given sign vector is a relatively open polyhednpis called aopen
face of the arrangement, and its topological closure is calledface of the arrangement. The
full dimensional faces are called theells or regions of the arrangement. The set of all faces
forms a polyhedral complex, called theomplex of the arrangement. One can represent the
facial incidence in the complex by a binary relation among sign vectorBor two sign vectors
X;¥Y 2f ;0;,+g™, we sayX conforms to Y (denoted asX 4 Y)if i 2 [m] and X; 6 O
implies X; = Y;. The poset (RY) := f (x) : x 2 RYg ordered by conformal relation is
a combinatorial representation of the complex. This poset is thiace poset F (A) of the
arrangement A.

The posetF (A) behaves nicely if all the hyperplanes contains the origin. An arraegient
of hyperplanes in which all its hyperplanes contain the origin O is calledcantral arrangement
of hyperplanes.

For example,F (A) contains the zero vecto0 which is the unique smallest element. Also,
it is symmetric with respect to the origin: if a sign vectorX is in F (A), its negative X is
in F (A). By adding the arti cial greatest element1 of all 1's to F (A), we obtain what we
call the face lattice F (A) of the central arrangement. We will see this lattice is isomorphic
to the lattice of a very special polytope.
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Let A be a central arrangement of hyperplanes represented by a matA, i.e, h; =

of the arrangement with the unit (d 1)-sphereS?® ! := fx 2 RY : jjxjj = 19, where each

hyperplane becomes al( 2)-spheres; := h;\ S¢ . Thus, the cut section is an arrangement
of (d 2)-spheres in the unit spheres® 1. The complex of the arrangement is essentially
represented in the sphere arrangement, namely(RY) = (S [f Og.

Consider the following H-polyhedron given by 2 inequalities:
Pa=fx:y"Ax 1;8y2f 1,+1g"g

Theorem 10.2 Let A be a column full rank matrix representing a central arrangement A.
Then P, is a polytope, and the face lattice F'(A) of A is isomorphic to the face lattice of the

polytope Pa.
SN S

J

The central arrangementA and the polytope P,
The polar of the polytopeP, is a very special polytope. In fact, it is a zonotope.

(Ph) = convfy"TA2RY:y2f 1;+1g"g
- fyTA2RY:y2[ L+1]"g
= L+ L+ + Lm;

where eachgenerator L; is the line segment [ Ai; Ai].



IP (Fukuda) v.2015-02-14 74

10.3 Face Counting Formulas for Arrangements and Zonotopes

We denote byf(A) the number ofk-dimensional faces of an arrangemewt of hyperplanes
in RY. We assume all arrangements are central and thus can be seea aphere arrangement
in S¢ 1,

With the sphere arrangement setting, it is not hard to relate any adgral arrangement ofm
hyperpanes inRY to a cake cutting. Lets® be the last sphere in the arrangement. It is the
boundary of two hemispheres’, := h* \ S *ands, := h,\ S% 1. The arrangement of
spheres restricted to one of the hemispheres is combinatorially e@lent to the cake cutting
of ad 1-dimensional ball bym 1 cuts. This observation together with Theoreni 1011
implies the following theorem.

Theorem 10.3 (Upper Bound Theorem for Arrangements) For any central arrange-
ment A of m hyperplanes in RY,
X 1
fFy(A) 2 mi Loand f.8) 2 dml :

i=0
Note that if one restrict the arrangement to the unit sphere, thdedHS expressions represent
fg 1(A\ SY Y andfyo(A\ S9 1),

Using the duality of arrangements and zonotopes, Theorédm 110.3 iligs the upper bound
theorem for zonotopes.
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Theorem 10.4 (Upper Bound Theorem for Zonotopes) Let P be a d-dimensional zono-
tope given by m generators (m d). Then,
X1 1
fo(P) 2 mi and fg o(P) 2 dml :

i=0

For xed d, both f4 1(P) and fo(P) are O(m¢ 1).

10.4 A Point Con guration and the Associated Arrangement

A point configuration is a setP = fp;;p2;:::; png of points in RY. The relative locations of
the points with respect to an arbitrary hyperplane represent theinderlying combinatorial
structure.

Letp = F:)LI be the lifted points in R, and the hyperplanesh; = fx : pf x =0g. The

nicely.
A open halfspaceh® is represented by the sign vectoX 2 f +; ;0g" of a region in the
dual hyperplane arrangement withj 2 X* i p 2 h*.

/ Txd+1 A 3
L]
Jeo . ; 6 *?
fer s |
4 primal
\ Xg+1=1
(+1_1_1+1+|_) >
Xy
ho

The partition (f 1; 4; 5g; f 2; 3; 6g) by the hyperplaneh corresponds to the region (+ ; ;+;

g

).
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10.4.1 Application: Largest Feasible Subsystem

Given an inconsistent linear inequality systenAx < b, nd a subsystem that is consistent
and largest possible. In other words, try to remove as few inequadis as possible to make
it feasible.

This problem is known to be NP-hard. One must rely on some kind of emeration or
approximation algorithms to solve this.

10.4.2 Applications: Best Separation of Points by a Hyperpl ane

Given two blue and red sets of points irRY, nd a (separation) hyperplane which is best
possible, i.e. the number of misclassi ed points is minimized.

This problem is NP-hard, and in fact, one can reduce this to the largefeasible subsystem
problem. The number of separations represents the underlyingnaplexity of enumeration.
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11 Computing with Arrangements and Zonotopes

As we learned in the previous section that central arrangements$ byperplanes and zono-
topes are essentially the same object mathematically. More speailty, if A(A) is a central
arrangement with anm  d representation matrixA, then its face lattice A" is anti-isomorphic
to the zonotopeZ (A) generated by the line segmentk; =[ Ai;Ai], ] 2 [m].

This duality implies that one can translate an algorithm for arrangenms to an algorithm
for zonotopes. In particular, the following pairs of problems with inpt matrix A given are
equivalent.

Problem 11.1 Cell Enumeration for Arrangements/Vertex Enumeration for Zowtopes
(a) Generating all cells ofA (A).

(b) Generating all vertices ofZ(A).

Problem 11.2 Vertex Enumeration for Arrangements/Facet Enumeration for 2notopes
(a) Generating all 1-faces (rays) oA(A).
(b) Generating all facets ofZ (A).

Problem 11.3 Face Enumeration for Arrangements/Face Enumeration for Zoropes
(a) Generating all faces oA (A).
(b) Generating all faces oZ (A).

There is a compact output-polynomial algorithm[[5] due to Avis and Fkuda for Problem
MI.1. Also, there is a worst-case optimal algorithm[20] due to Edetsibner, O'Rourke and
Seidel for ProblenI1]1.

There is a output-polynomial algorithm [49] due to Seymour for Prdbm[11.2. No com-
pact output-polynomial algorithm is known for ProblenT11.P2. When inpt is nondegenerate,
Problem[11.2 has a trivial algorithm which is compact and output-polyomial, just go though
all ", combinations. This suggests that when input is only \slightly” degemate, the naive
algorithm might be practical.

The paper [27] shows that there is an output-polynomial algorithma generate all faces
of A(A) from the list of cells. This means that together with the compact aiput-polynomial
algorithm [5] for Problem[I1.1, ProbleniI1]3 can be solved by an outppblynomial algo-
rithm.

11.1 Cell Generation for Arrangements

Here we present the reverse search algorithim [5] which is the onlyrgEact output-polynomial
algorithm for generating all cells of an arrangement. By duality, thiss a compact output-
polynomial algorithm for enumerating all vertices of a zonotope.

Let A be an arrangement of distinct hyperplanesh; : i 2 [m]g in RY, where each
hyperplane is given by a linear equalityh; = fx : Ajx = bg. The two sides ofh; are
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h! = fx:Ax hgandh = fx:A;x hg. Foreachx 2 RY, the sign vector (x) of x is
the vector inf ;0;+g™ de ned by

8
< if x 2 h

(x)i=_ 0 ifx2h (i 2 [m)):
+ if x2ht

Let Vcere be the set of sign vectors of points iR whose nonzero support isii]. We can
identify each vectorc in Vcg . with the open cell (opend-face) of the arrangement de ned
by fx : (x) = cg. For two cellsc and ¢ let sep(c; ) be the set of separators of and c°
that is, the set of elements in [m] such that ¢, and ¢® have opposite signs. We say that two
cells c and c® are adjacent in Gegy, if they dier in only one component, or equivalently,
jsep(c; dj = 1. The following lemma is important.

Lemma 11.4 For any two distinct cells ¢ and ¢ in Vggy , there exists a cell ¢®which is
adjacent to ¢ and sep(c;®) sepc; d.

Proof.  Let candc®be two distinct cells, and letx (x9 be a point in ¢ (in ® respectively)
in general position. Moving fromx toward x° on the line segmentX; x9, we encounter the
sequence of cellsg, = ¢;¢;C;:::; 6 = ¢ and we can easily verify thatc, is adjacent toc
andsep(c;c) sepc;d. |

Let us assume thatv contains the cellc of all +'s. Lemmal[lIl.4 implies that for each cell
c di erent from c , there is a cellc®which is adjacent toc and sefc ;c®) sep(c ;c). Let
us de ne fce () as suchc®that is lexico-largest (i.e., the unique element irsep(c; &Y is
smallest possible). Then, Gcel ; Scell ;fcew ) Is a nite local search with Scg, = fcg.

Figure [11.1 describes the trace of the local search on a small exémpith d = 2 and
m = 4.

By reversing this local search, we obtain an algorithm to list all cells innaarrangement.
There are a few things to be explained for an implementation. First,@vassumed that the
cellc of all +'s is given, but we can pick up any celt in the arrangement, and consider it as
the cell of all +'s since replacing some equalitp;x = by Ajx = Ik does not essentially
change the arrangement. Note that one can obtain an initial cell byicking up any random
point in RY and perturbing it if it lies on some hyperplanes.

Now, how can we realize ReverseSearch(Ad, , ceLL -SceLL ,f ceLL ) in an e cient way?
First we can set cg;p. = mand Scg. = fcg. Foranycellc2 Vecg,, andk 2 M, the
function Adjcg, . (c;K) can be realized via solving an LP of the form

minimize (maximize) Yy
subject to y=Ax b;

yi Oforalli6 kwith ¢ =+ (11.1)
yi Oforalli 6 kwith¢g=;
where minimization (maximization) is chosen wherty, = + (¢ = , respectively). The

function returns the adjacent cellc® with sep(c;® = fkg if and only if LP (L1.I) has a
feasible solution with negative (positive) objective value. The timé&Ad] g, ) depends on
how an LP with d variables andm 1 inequalities is solved. We denote this as a function
LP(d; m) of m and d, as we used this notation in Sectiofl8.
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Figure 11.1: An arrangement of hyperplanes and the trace bfg .

There is a straightforward implementation off cg.. , which solves a sequence of LP's
similar to (I1.1) with objective functionsy;;y,;ys;:::. This means we may have to solve
O(m) LP's in the worst case. Presently we don't know how to implement it in anore
e cient manner.

Theorem 11.5 There is an implementation of ReverseSearch(Adjcg.. » ceLL » Scerl » fcewL )
for the cell enumeration problem with time complexity O(m d LP(d; m)jVceLL j) and space
complexity O(m d).

Proof. To prove this, rst we recall that Theorem says, the time complaty of
ReverseSearch i©( t (Ad))jVj+t(f)JE]). As we remarked earlier, cg.. = m, t(Adjcg . ) =
O(LP(d; m)), and t(fce,. ) = O(m LP(d;m)). SincejEcgj djVcew j holds for any
arrangement (see [27]), the claimed time complexity follows. The sgacomplexity is clearly
same as the input siz&O(m d). | |
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12 Minkowski Additions of Polytopes

A zonotope is a very special Minkowski sum of polytopes, namely, aiMowski of line
segments. In this section, we study the complexity of Minkowski sws of polytopesPy, :::,
P in RY and some algorithms for computing Minkowski sums of polytopes.

—

There are three basic variations of the problem. When input is H-pdigpes and output is
also H-polytope, Tiwary [50] has recently proved that the assot¢e decision problem is NP-
hard for k = 2. Here the associated decision problem is to test whether a given H-polytope
P is the Minkowski sum of given H-polytopes,, :::, Px. When input is V-polytopes and
output is H-polytope, the problem contains the representation cwersion for polytopes as a
special casel = 1) whose complexity is still unknown. The last case when both inputrad
output are V-polytopes is the only case for which an output-polymaial algorithm is known.

In this section, we present a compact output-polynomial algorithrfor the last case. The
algorithm is a natural extension of (the dual form of) the reverseearch algorithm given in
Section[I1.1.

Faces, Minkowski Decomposition and Adjacency

For a polytope P and for any vectorc 2 RY, the set of maximizersx of the inner product
c"x over P is denoted byS(P;c). Thus each nonempty face oP is S(P;c) for somec.
We denote byF (P) the set of faces oP, by F;(P) the set of i-dimensional faces, and by
fi(P) the number of i-dimensional faces, for = 1;0;:::;d, For each nonempty face-,
the relatively open polyhedral cone of outer normals d? at F is denoted by N (F;P).
Thus, c 2 N(F;P) if and only if F = S(P;c). The normal fan N(P) of P is the cell
complexf N (F;P)jF 2 F(P)g whose body isR?. If F isi-dimensional { =0;1;:::;d), the
normal coneN (F;P) is (d i)-dimensional. Thus the extreme points oP are in one-to-one
correspondence with the full dimensional faces (which we call thregions or cells) of the
complex.

Proposition 12.1 Let Py, P,, ..., P¢ be polytopes in RY and let P = P, + P, + + Py.
Then a nonempty subset F of P isaface of P ifandonly if F = F;+ F,+  + Fy for some
face F; of P; such that there exists ¢ 2 RY (not depending on i) with F; = S(P;;c) for all i.
Furthermore, the decomposition F = F; + F, + + Fy of any nonempty face F is unique.

Proof.  The equivalence follows directly from the obvious relation [30, Lemmal24]

S(P1+ P+  + Pco)= S(Pi;o)+ S(P;0)+  + S(Py;c) for any c2 R%:
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For the uniqueness, letF be a nonempty face withF = S(P;c) for somec and let F =
Fi+ F, + + Fyx be any decomposition. First, note thatF; S(P.c) for all i, because
the value c™x for any x 2 F is the sum of the maximum values'x; subject to x; 2 P; for
i=1;::;k,andthusifx 2 F andx = X1 + X5 + + Xi for x; 2 Fi, then x; 2 S(P;; ©).
Now suppose there exist&; properly contained inS(P;;c). Let v be an extreme point of
S(P;; c) not in F;. Then there is a linear functionw™x such that w'v is strictly greater than
any value attained byx 2 F;. Now let x be any point attaining the maximum ofw'x over
the polytope F, + F, + Fi 1+ F + + Fk. Clearly x + v 2 F but this point cannot
beinFi+ F>+ + Fy, a contradiction. This proves the uniqueness. [ |

We refer the unique decompositior = F; + F, + + Fy of a nonempty faceF as the
Minkowski decomposition. Here, the dimension of is at least as large as the dimension of
eachF;. Thus we have the following.

Corollary 12.2 Let Py, Py, ..., P¢ be polytopes in RY and let P = P, + P, + + P. A
vector v 2 P is an extreme point of P if and only if v=v; + v, + + v, for some extreme
point v; of P; and there exists ¢2 RY with fv;g= S(P;; ) for all i.

For our algorithm to be presented in the next section, it is importanto characterize the
adjacency of extreme points irP.

Corollary 12.3 Let Py, Py, ..., P¢ be polytopes in RY and let P = P, + P, + + Pe. A
subset E of P is an edge of P ifand only if E= E; + E + + Ey for some face E; of P,
such that dim(E;) =0 or 1 for each i and all faces E; of dimension 1 are parallel, and there
exists ¢ 2 RY with E; = S(P;; c) for all i.

The following variation of the above is useful for the algorithm to be nesented. The
essential meaning is that the adjacency of extreme points is inhegit from those of Minkowski
summands.

Proposition 12.4 Let Py, P,, ..., P, be polytopes in RY and let P = P, + P, + + Py.
Let u and v be adjacent extreme points of P with the Minkowski decompositions: u = u; +
u, + +uandv=vs+ v, + + vk. Then u; and v; are either equal or adjacent in P;
for each i.

Proof. Let u and v be adjacent extreme points. It is su cient to show that [u;v] =
[ug;va] +[up; vo] + +[ug; vi] and each {ii;v] is a face ofP;. Let ¢ 2 RY be such that
[u;v] = S(P;c). Because i;v] = S(P1;c) + S(P,;c) + + S(Py; ¢) and by the uniqueness
of decomposition ofu and v, both u; and v; are in S(P;;c), for all j. This implies that
[ui;vi]  S(Pj;0), for all j. On the other hand, one can easily see that in general; {/]
[ug; vi] + [ug; vo] + +[uk; w]. The last two relations give {ij;v;] = S(P;;c) for all j. This
completes the proof. | |

This proposition immediately provides a polynomial algorithm for listing & neighbors
of a given extreme point using linear programming.
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12.1 Complexity of Minskowski Sums of V-Polytopes

The nontriviality of computing Minkowski sums of V-polytopes can baunderstood by how
the complexity of Minkowski sums varies from some instances to dher. In particular, we
are most concerned with the complexity of sums in terms of the sizé summands.

The rst proposition shows that the vertex complexity of Minknowki sums is linearly
bounded by the vertex complexity of summand polytopes.

Proposition 12.5 (Linearly Bounded Minkowski-Addition) . For each k 2 and

d 2, there is an infinite family of Minkowski additions for which fqo(P; + P, + + Py)
fo(P1) + fo(P2) + + fo(Py).

Proof. Supposek 2 andd 2. First pick up any d-polytope, sayQ, with at least k
extreme points, and seleck extreme points. For eaclj th selected extreme point/, make a
new polytopeP; from Q by truncating only v/ with one or more hyperplanes. Now we claim
that the number fo(Py + P, + + Py)  fo(Py) + fo(Po) + + fo(Px). See Figure1Z]1
for an example fork =2, d=3 and Q is a 3-cube. To see this, let be an extreme point of
P; for some xedj. There are three cases. The rst case is whenis an unselected one, i.e.
an extreme point ofQ not selected. In this case, it can be an Minkowski summand of an
extreme point of P in a unique way, since any linear function maximized exactly at over

P; is maximized exactly atv over other P;'s. The second case is whenis a newly created
vertex by the truncation of Vi . Since it is obtained by the truncation o/, any linear function
maximized exactly atv over P; is maximized exactly atv' over other otherP;'s. The last
case is wherv = V' for somei 6 j. This case is essentially the same as the second case
wherev contributes uniquely to a new extreme point with each truncation veex of P;. By
Corollary [12.2, every extreme point oP; contributes at most once tof o(P1 + P+  + Py).
This completes the proof. |

Figure 12.1: Minkowski Sum of Truncated Cubes

The following theorem gives the other extreme to the previous propition. Namely, the
obvious upper bound of the vertex complexity can be achieved follage class of Minkowski
sums of polytopes.
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Theorem 12.6 (Tight Upper Bound [28])
In dimension d 3, it is possible to choose k (  d 1) polytopes Pq;:::;Px so that the
trivial upper bound for the number of vertices is attained by their Minkowski sum.

fo(Pr+ P2+ + Py)= fo(P1) fo(P2) fo(Py):

Proof. Here we give outline only, see [28] for a precise construction. ®n d 1)
orthogonal planes inRY, placev; points in convex position. Perturb the points slightly to
make eachP; full dimensional. Figure[12.2 shows the case whég(P.) = fo(P2) = 4 and
fo(P) = fo(P1) fo(P2) =16 n

Figure 12.2: Minkowski Sum ofd 1) Thin Polytopes in Orthogonal Spaces

12.2 Extension of a Zonotope Construction Algorithm

We assume in this section thatP,, P, ..., P, are polytopes inRY given by the setsVy,
Va, ..., Vk of extreme points. We also assume that the grap&(P;) of P; is given by the

v is less than ; in G(P;), we assume that Adj(v;i) = null for all i > deg(v). Finally
we dene = 1+ L+ + , an upper bound of the maximum degree d&(P), due to
Proposition [1Z.4. For example, when the input polytopes are simple @riull dimensional
then ; = dforallj and = k d. Note that for a given setV,, one can compute the adjacency
list in polynomial time using linear programming.

Recall that the Minkowski addition problem is to compute the seV of extreme points of
P =P+ P+ + Pc. We shall present a compact polynomial algorithm for the Minkowski
addition problem.

The key idea in our algorithm design

The main algorithmic idea is quite simple. Just like for the vertex enumation for convex
polyhedra using reverse search given in Sectibnl9.2, it traces a diegicspanning treeT of
the graph G(P) of P rooted at an initial extreme pointv . The di erence from the vertex
enumeration algorithm is that the polytopeP is not given by a system of inequalities (i.e.
not an H-polytope) in the present setting but as a Minkowski-additio of V-polytopes. Thus
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we need to introduce a new way of de ning a directed spanning treddt is easy to trace.
We shall use the following simple geometric property of normal fans.

Proposition 12.7 Let v and v° be two distinct extreme points of P, and let c 2 N(v;P)
and c®2 N(v®P). Then there exists an extreme point v®adjacent to v such that N (v®°P)
contains a point of form (1  )c+ c°for some 0 1.

Proof. Sincev 6 VO their outer normal cones are two distinct full dimensional cones
in the normal fan N(P). This means that the parameterized pointt( ) := ¢+ (° 0

(0] 1) in the line segment ¢; @ must leave at least one of the bounding halfspaces of
the rst cone N(v;P) as increases from 0 to 1. Since the bounding halfspacesNofv; P)
are in one-to-one correspondence with the edges®fncident to v, any one of the halfspaces
violated rst corresponds to a vertexv®adjacent to v claimed by the proposition. | |

Let us x v as an initial extreme point of P. Finding one extreme point ofP is easy.
Just select any generic 2 RY, and nd the unique maximizer extreme pointv' of c"x over
P;, for eachi. The pointv= v+ v?+  + vk is an extreme point ofP.

Now we construct a directed spanning tree d&(P) rooted at v as follows. Letv 2 V
be any vertex di erent from v . We assume for the moment that there is some canonical
way to select an interior point of the normal cone oP at any given vertex, as we shall give
one method to determine such a point later. Let and ¢ be the canonical vector oN (v; P)
and N (v ;P), respectively. By Proposition[IZJ7, by settingv® = v , we know that there
is a vertex v®adjacent to v such that N (vV°%P) meets the segmentd; c]. In general there
might be several such vertices¥® (degeneracy). We break ties by the standard symbolic
perturbation of casc+ ( ; 2;:::; 97 for suciently small > 0. De ne the mapping
f:Vnfvg! V asf(v) = v This mapping, called alocal search function in reverse
search, determines the directed spanning tré(f ) = (V; E(f )) rooted at v , whereE(f ) is
the set of directed edge$(v;f (v))jv2 V nfv gg.

Proposition 12.8 The digraph T(f ) is a spanning tree of G(P) (as undirected graph) and
v is a unique sink node of T(f).

Proof. By the construction, v is a unique sink node of (f ). It is su cient to show that
T(f) has no directed cycle. For this, take any edges/{(v®°= f (v)) 2 E(f). Let ¢, ¢ be the
canonical vector forv, v , respectively. Without loss of generality, we assume nondegensra

point of N (v; P),
c'(v v%>o: (12.1)

Again, by the construction and because the canonical points arelscted as interior points of
the associated normal cones, there exists<O < 1 such thaté¢:=(1  )c+ ¢ 2 N(V¥P).
This implies € (v?° v) > 0, that is,

0< (@ e+ c) (v v)
=1 )eT(v® v+ ()T v)
< () (v v (by®@ZD):
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This implies that the vertex v®attains a strictly higher inner product with ¢ than v. There-
fore, there is no directed cycle i (f ). | |

Figure[1Z.3 shows an example of the directed spanning tr€éf ) in green.

Figure 12.3: The GraphG(P) and A Rooted Spanning Tre€eT (f )

A reverse search algorithm, to be presented below, traces resady the tree from the root
v in depth- rst manner, using an adjacency oracle.

The critical computation in our algorithm is solving a linear programmingproblem. We
denote by LPd; m) the time, as we used in Sectioln 8. necessary to solve a linear prognang
in d variables andm inequalities.

Now we can state the complexity of our algorithm.

Theorem 12.9 There is a compact polynomial algorithm for the Minkowski addition of k
polytopes that runs in time O( LP(d; )fo(P)) and space linear in the input size.

The algorithm

The sequel of the section is devoted to present the technical da¢ of a reverse search
algorithm that traces T (f ) starting from its root vertex v against the orientation of edges.
We shall prove Theoreni"12]9 at the end.

As usual, our reverse search algorithm requires, in addition to thedal search function
f, an adjacency oracle function that implicitly determines the graplG(P).

Let v be any vertex ofP with the Minkowski decompositionv = v; + v, + + v (see,
Corollary ??). Let

= f@;i):)=1;::kandi=1;:::; 0 (12.2)
Recall that for any ;i) 2 , Adj ;(v;;i) is the ith vertex adjacent tov; whenever it is not

null. We shall call a pair {;i) valid for v if Adj;(vj;i) & null, and invalid otherwise. Let
us de ne the associated edge vectoes(v;;i) by

Adj;(vi;1) v (j;1) is valid for v

_ (12.3)
null otherwise.

& (vj;i) =
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Proposition[12.4 shows that all edges & incident to v are coming from the edges incident
to v;'s, or more precisely, each edge &f incident to v is parallel to somee;(v;;i). This
immediately implies that is an obvious upper bound of the degree of For each §;r) 2 ,

let us group the same (parallel) directions together as

(v;s;n)=1@i)2 @ e(v:i) kes(vs;r)g: (12.4)

Consider it as the empty set if §;r) is invalid. Now, for any given pair §;r) 2 , checking
whether es(vs; r) determines an edge direction oP is easily reducible to an LP (or more
precisely, a linear feasibility problem):

es(Vs;r)T < 0

e (vj;i)T 0 for all valid (j;i) 62( v;s;r): (12.5)

More precisely, the system[(12]5) has a solution if and only if the direction es(vs;r)
determines an edge d? incident to v. If it has a feasible solution, then by Proposition 1214,
the vertex ¥ adjacent to v along this direction is given by

0=t

Adj; (vj;1)  if there existsi such that (j;i) 2 ( v;s;r)

'O‘j = .
v otherwise.

Let us denote by (v) as the set of all pairs §;r) 2 such that es(vs; r) determines an edge
of P and (s;r) is a member of (v;s;r) with the smallest rst index. This set represents a
duplication-free index set of all edge directions at.

Now we are ready to de ne our adjacency oracle as a function Ady: ' V[f nullg
such that
¢ if (s;r)2 (V)

Adj(v; (s; = .
I(vi(sin) null otherwise.

(12.6)

Lemma 12.10 One can evaluate the adjacency oracle Adj(v;(s;r)) in time LP(d; ).

Proof. The essential part of the evaluation is solving the system (12.5). $®m = | |,
the system hasd variables and at most inequalities and the claim follows. | |

Lemma 12.11 There is an implementation of the local search function f (v) with evaluation
time O(LP(d; )), for each v 2 Vnfv gwith the Minkowski decomposition v = vi+ v+  + V.
Proof. The implementation of f essentially depends on how we de ne the canonical
vector of the normal coneN (v;P). Like in the adjacency oracle implementation, we use
an LP formulation. Since the set of directions;(v;i) for valid (j;i) 2 include all edge
directions at v, the normal coneN (v; P) is the set of solutions to the system

e (vi;i)T 0 for all valid (j;i) 2
Since we need an interior point of the cone, we formulate the followinhgp:

max 0

subject to

e(vi;i)T + o 0 forallvalid (j;i) 2
0 K:

(12.7)
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HereK is any positive constant. Since is a vertex ofP, this LP has an optimal solution. We
still need to de ne a unique optimal solution. For this, we use a veryragmatic de nition: x
one deterministic algorithm and de ne the canonical vector as thenigue solution returned
by the algorithm. Since the number of variables isl + 1 and the number of inequalities is
at most + 1, the assumptions on LP implies the time complexityO(LP(d; )) to compute
the canonical vector. Note that for practical purposes, we shlwl probably add bounding
inequalities for to the LP (IZ.7) suchas 1 i 1 forallito make sure that the optimal
solution stays in a reasonable range. This does not change the ctewjty.

An execution off requires to compute the canonical vectors and ¢ . Once they are
computed, the remaining part is to determine the rst bounding hygrplane of the normal
coneN (v; P) hit by the oriented linet( ):= ¢+ (¢ c¢)(as increases from 0 to 1). This
amounts to solving at most one-variable equations, and is dominated by the canonical
vector computation. | |

In Figure [IZ.4, we present the resulting reverse search algorithmhere we assume that
the index pairs (;i) in are ordered as (1;1) < (1;2) < < (1 )< (21 < <
(K; «)-

procedure MinkowskiAddition(Adj ,( 1;:::; «), vV ,f);
v:i=Vv; (J;i):=(1;0); (* (j;i): neighbor counter *)
output v;
repeat

while (j;i) < (k; ) do
increment (j;i) by one;

(r1) next := Adj (v; (j;1));
if next 6 null then
(r2) if f(next) = vthen (* reverse traverse *)
v = next;(j;i) :=(1;0);
output v
endif
endif
endwhile ;
if v6 v then (* forward traverse *)
(f1) u:=v;, v:i="~(v),
(f2) restore (j;i) such that Adj (v;(j;i)) = u
endif

until. v=v and (j;i) = (k; ).

Figure 12.4: Reverse Search Algorithm for Minkowski Sum

Finally, we are ready to prove the main theorem, Theorem12.9.

Proof. We use the general complexity result, Corollar 9.3, saying the timemplexity
of the reverse search in Figurie12.4 G( (t(Adj) + t(f))jVj). By Lemma[IZ10 and Lemma
[12.11, botht(Adj) and t(f) can be replaced by LPg; ). Sincefy(P) = jVj, the claimed
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time complexity follows. The space complexity is dominated by those tife functionsf and
Adj which are clearly linear in the input size. | |
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13 Problem Reductions in Polyhedral Computation

In this section, we look at some basic problems in polyhedral comptitm. Just like in
combinatorial optimization, it is quite hard to distinguish hard problens (typically NP-hard
problems) from easy problems. Here there are two sorts of easpllems. The rst group
consists of decision problems that are polynomially solvable. The sadogroup consists of
enumeration problems that may require output whose size is expati@l in the input size,
but are output-polynomially solvable.

We shall present some hard decision problems in Section—13.1, and uscsome hard
enumeration problems in Sectiofi 13.2.

13.1 Hard Decision Problems in Polyhedral Computation

We start with two decision problems in polyhedral computation that & related to linear
programming but are known to be hard.
ForA2 Q™ 9andb2 Q™, let Py (A;b) be the H-polyhedron

Py(A:b):= fx2 RY: Ax hg; (13.1)
and let A(A; b) be the associated arrangement of hyperplanes:
A(A;b) = fhy; i hgg; (13.2)
hi == fx2R%:Aix hg: (13.3)
Problem 13.1 Optimal Vertex of a Polyhedron (OVP)
Input: A2Q™ 9 b2 Q™ c2Q%andK 2 Q.
Question: Does there exists a vertex of Py (A; b) with c'v K ?
Problem 13.2 K-Vertex of a Polyhedron (KVP
Input: A2 Q™ 9 b2 Q™ c2QYandK 2 Q.
Question: Does there exists a vertex of Py (A; b) with ¢'v = K ?

Theorem 13.3 ([26]) The decision problems OVP and KVP are both NP-complete.

Proof. It is clear that both problems are in the class NP. The proofs of the R
completeness will be obtained by a polynomial time transformationdm the following prob-
lem, known to be NP-complete in the strong sense [29]:

Problem 13.4 Directed Hamiltonian Path (DHP)
Input: A directed graph G = (V; A) and two distinct verticess, t 2 V.

Question: DoesG contain a directed Hamiltonian path froms to t ?
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Let G = (V;A) be a directed graph ands 6 t 2 V. Associate a variablex; with each
arc (i;j ) 2 A. Let P(G) be the polytope given by:

X X
Xij Xji = 0; foreachi 2V f s;tg; (13.4)
JiGij)2A JiGii)2A
X X
Xsi Xjs = 1 (13.5)
ji(sii)2A jiis)2A
X X
Xij Xjt = 1; (13.6)
Jiti)2A jiGt)2A
Xij 0; for each ;j) 2 A: (13.7)

The matrix of the coe cients of these inequalities is totally unimodular([43], Proposition
2.6, p. 542) implying that P(G) is integral. It follows that an extreme point x of P(G) is
the characteristic vector of a directed path joinings to t in G and, possibly, a set of circuits.
If a circuit C exists, thenx is a convex combination of the two points obtained by adding
or subtracting small > 0 on all the arcs of the circuit, a contradiction. Hence is the
characteristic vector of a simple directed path joining to t. One verify easily that all such
paths are extreme points oP (G), proving that the extreme points of P(G) are exactly the
characteristic vectors of the simple directed paths joining to t in G. These two facts thus
imply that, for K = jVj 1 andc= 1 (the vector of all 1's), both the OVP and the KVP
problems forP (G) are NP-complete in the strong sense. This completes the proof. 1§

There are similar complexity results for arrangements of hyperplas.
Problem 13.5 Optimal Vertex of an Arrangement (OVA)
Input: A2 Q™ 9 b2 Q™ ,c2 Q4andK 2 Q.
Question: Does there exists a vertex of A (A; b) with c'v K ?
Problem 13.6 Optimal Vertex of an Arrangement (KVA)
Input: A2 Q™ 9 b2 Q™ c2 QYandK 2 Q.
Question: Does there exists a vertex of A(A; b) with c'v= K?

Theorem 13.7 ([26]) The decision problems OVA and KVA are both NP-complete.

Proof. Consider an instance of DHP and build a corresponding instance foV® and
KVA as follows: To eacharc(;j ) 2 A, we associate a variablg; . Letd := JAj, K = jVj 1,
c= 1 and de ne the arrangement generated by the following set of hyg#anes:
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Hi = fx2RY X Xi X xi =0g; foreachi 2 V f s:tg; (13.8)
iii)2A jiGi)2A
X X
Hse = fx 2 RY Xsj Xjs = 1g; (13.9)
ji(sii)2A ji(:s)2A
X X
Hi = fx2RY Xy xip = 1g; (13.10)
Jicti)2A JiGit)2A
Hy = fx2RYx; =0g; for each §;j) 2 A: (13.11)

First we observe that if DHP has a \yes" answer, so does the cosponding instance of
OVA and KVA, as the characteristic vector of any directed Hamiltoman path lies on thejVj
hyperplanesH; fori 2 V aswellasonjAj (jVj 1)) = jAjj Vj+1 of the hyperplanesH;;
fori 6 j 2 V. Note that the jV] hyperplanesH; for i 2 V are not linearly independent, but
any subset of [Vj 1) of them are. Hence there argfj | Vj+1)+(jV] 1)= jAjlinearly
independent hyperplanes containing the characteristic vector any directed Hamiltonian
path joining sto t in G, implying that the latter is a vertex of the given arrangement.

Now suppose that KVA or OVA has a \yes" answer produced by a veex v of the con-
structed instance. One can write thg@Aj equations de ning the hyperplanes of the instance
as a system of the formAx = b. It is well known that the matrix [ A; b] is totally unimodular
(seel]43] for example). Thus any vertex of the arrangement haslyp+1; 1, or O coordinates,
as shown by Cramer's rule for solving a linear system.

Let S be a set o linearly independent hyperplanes of the given family whose intersemrt
isv. As the V] hyperplanes inf Hiji 2 Vg are not linearly independent, the number of these
hyperplanes which are irS is at most (jVj 1). Hence the number of non zero coordinates
ofvisatmost jVj 1). Asc=1andc'v K =(jVj 1), we have that exactly {Vj 1)
coordinates ofv are (+1), all the others being (0)'s. Thusv is the characteristic vector of a
setP of (jVj 1) arcs ofA. This also implies that KVA has a \yes" answer if and only if
OVA has a \yes" answer

If P is a directed Hamiltonian path inG joining s to t, then we are done. OtherwiseR
contains a directed path joinings to t in G and at least one directed cycl€. But consider
vP2 R" de ned by

0 0 if(i;j)2C;
i

Vi = vj otherwisg

for each ;j) 2 A: (13.12)

This complete the proof. |
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13.2 Hard Enumeration Problems in Polyhedral Computation

For matricesV 2 Q% 9 and R 2 Q! ¢, the V-polyhedron with representation pair ¥/;R) is
denoted byPy (V;R), i.e.,

Py(V;R):==fx:x=V +R; 1" =1; 0; 0g: (13.13)

The following decision problem is arguably the most important problem ipolyhedral
computation.

Problem 13.8 Polyhedral Veri cation Problem (PVP)
Input: A2Q™ 9 b2Q™,V2QsdandR2 Q' ¢.
Question: IsPy (A;b) 6 Py (V;R) ?

It is not di cult to prove that if PVP is in P, then there is an output-po lynomial algorithm
for the polyhedral representation conversion problem discussedSection[9, see Polyhedral
Computation FAQ [23].

PVP is easily seen to be in NP, because if the polyhedra are not equélete is a succinct
certi cate for it, a point x in one of the polyhedra which is not in the other. Unfortunately,
the complexity of PVP is still open. The decision problem PVP was rst psed by Lovasz,
seel]49], and has been extensively studied by many researchers.

One of the most exciting progresses is the NP-completeness of aelp related problem,
due to Khachiyan et al. [35].

Problem 13.9 Vertex Enumeration for an Unbounded Polyhedro n (VEU)
Input: A2Q™ 9 b2 QmandV 2 Qs ¢.
Question: Does the H-polyhedrorPy (A; b) contain a vertex not inV?

Theorem 13.10 ([26]) The decision problems VEU is NP-complete.

Proof.  (Outline) It is easily seen to be in NP, because if the answer is yes, théhere is
at least one vertex not inV. The proof uses a reduction from the NP-complete problem:

Problem 13.11 Negative Circuit Enumeration (NCE)

Input: A digraph G =(V;E) with edge weightw : E ! Q, and a family S of negative
circuits of G.

Question: DoesG contain a negative circuit not in the family S?

P
Here, anegative circuit is a directed circuitC  E whose total weight ,. is negative. It
is shown by Khachiyan et al. [[35] that NCE is NP-complete from a redtion from SAT.
|

(This section is to be extended.)
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14 Evolutions and Applications of Polyhedral Compu-
tation

Polyhedral Computation has been shaped and polished through aat demands from nu-
merous mathematicians, scientists, engineers and even socialrg@es. In this section, we
present the author's personal involvements in various externak anternal projects which
have driven the advancement of polyhedral computation and sefare developments.

1987 { 1992: The First Stage. The rst generation of codes for polyhedral representa-
tion conversion were written rst for mathematicians to understad certain combina-
torial polyhedra, such ascut polytopes , cut cones, andtraveling salesman poly-
topes. It is extremely di cult to determine the facet inequalities of these polyhedra
because typical associated combinatorial optimization problemseaNP-hard. How-
ever, by computing the H-representation from a V-representain for small instances,
many new facet inequalities were discovered and used for nding aatger LP relax-
ation of NP-hard optimization problems. The rst version of my implenentation of
the double description algorithm described in Sectidn 9.1 was releasedanuary 1988
is calledpdd where p stands for the programming language Pascal. It helped tharly
stage of research on cut polytopes by Michel Deza and Monique kent, see[[17] 18].

1993 { 1996: The Critical Second Stage. Then, a more computationally demanding
task was needed for research imaterial science . Two physicists G. Ceder and
G.D. Garbulsky at MIT contacted both David Avis and myself in 1993, ad asked
for our computational help in enumerating all extreme points of a higy degenerate
polytope in dimension 8 given by 729 inequalities. The vertices reprasghysically
stable states of a ternary (3 elements) alloy. David had a C-implem&&tion named
rs (which was replaced bylrs later) of the reverse search algorithm given in Section
then, and | had a C-version nameddd of the earlier codepdd. Both David and
myself devoted our e ort to compute the vertices, and nally it todk us about a month
to compute the results. Our greatest excitement came when werived that the nal
results computed by our implementations of two totally di erent algeithms returned
exactly the same results. This successful computation lead to aps by the four of
us [12].

About the same time, then a doctoral student Francisco Valero afeuromuscular
systems laboratory at Stanford University contacted me. The application Ylero
discovered then surprised me considerably. | did not imagine that ercan nd an
application of polyhedral computation in human bodies and muscles.eHemail in May
1994 describing his application reads

My application deals with nger muscles having force limits (i.e., form
zero force to their maximum physiological force for each nger make) which
de nes a hypercube in a dimension equal to the number of musclesden
consideration. Other mechanical, functional or anatomical chacteristics
produce further constrain equations (i.e., need the force of thenger to be
zero in certain directions, nger size/con guration, etc.). The vetex enu-
meration technique helps me identify the limits of muscle force prodiicn
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under these constraints, which in turn maps into functional limits sch as
maximum nger forces, accelerations, etc, which are independeot muscle
force coordination. Coordination can be studied with standard linegoro-
gramming techniques. The limits of function, however, require thexplicit
enumeration of the vertices of convex polyhedra in-dimensional space.

Valero has been a strong advocate of computational geometrychkamiques applied to
biomedical and biomechanics elds since then. A recent paper[36] shows thenal-
ysis of muscle redundancies using the vertex enumeration in polyhedra.

From the software development front, a new C++ version otdd, called cdd+ , was
released in April 1995 which has the capability of using both oating-@int and rational
exact arithmetic using GMP [1].

1997 { 2007: Developments of Polyhedral Computation Librar ies. Further advance-
ments were made during this period for the development of softwveaC-librariescddlib
and Irslib , based oncdd and Irs , respectively by Fukuda([22] and Avis[]|2]. Natu-
rally, these libraries have been integrated into other programs.

A versatile R-interface of cddlib was written by the statistician Charles Geyer of
University of Minnesota. It is available from

http://www.stat.umn.edu/~charlie/

A webpage of computingall Nash equilibria  of bimatrix games usingrslib  written
by Rahul Savani became available at

http://banach.Ise.ac.uk/form.html.

A Matlab toolbox for the study of control theory with an emphasis on parametric
optimization was written by a group of researchers at the systemydamics and control
group at ETH Zurich. It has an interface calledcddmex to cddlib and is available at

http://control.ee.ethz.ch/research/software.en.html

A Python interface PyPolyhedron  to cddlib was written by Pearu Peterson. He
wrote in his email in 2007 \I am using it for analyzing multi-soliton interat¢ions. In
terms of computational geometry, | just construct special pohedron in (N + 1)-D
space, project it toN-D space, and then nd its intersection with 2-D hyperplane,
which after projecting to 2-D space gives an interaction patternfahe N -soliton solu-
tion." It is available at http://cens.ioc.ee/projects/polyhedron/

Polymake is a platform to do polyhedral and algebraic computation mainly for
mathematicians whose two core engines aceldlib and Irslib . It is available at
http://www.polymake.org/doku.php

TOPCOM [45] is a package for computing Triangulations Of Point Con guratioa
and Oriented Matroids. It uses the LP code otddlib for the recognition of regular
triangulations.

Minksum [http://www.cs.dartmouth.edu/~weibel/minksum.php] is a program to com-
pute the V-representation (i.e. the set of vertices) of the Minkogki addition of several
convex polytopes given by their V-representation. It is an impleméstion in C++


http://www.stat.umn.edu/~{}charlie/
http://banach.lse.ac.uk/form.html
http://control.ee.ethz.ch/research/software.en.html
http://cens.ioc.ee/projects/polyhedron/
http://www.polymake.org/doku.php
http://www.cs.dartmouth.edu/~{}weibel/minksum.php
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language of the reverse search algorithm given in Section 12.2 whtisee complexity
is polynomially bounded by the sizes of input and output. It relies on t exact LP
solver of cddlib .

Gfan [33] is a program to list all reducedGiebner bases of a general polynomial
ideal given by a set of generating polynomials in -variables. It is an implentation in

C++ language of the reverse search algorithm [25]. It relies on the &t LP solver of
cddlib .

2004 { 2011: Expanding Application Fields. An application of Minkowski sum of
polytopes presented in Sectioi 12 is given in a doctoral thesis of J.P. Petit [4i4i]
2004, which iscomputer aided tolerancing in design and manufacturing using
a mathematical model with convex polytopes in dimension 6. The dimsion is simply
3 + 3 where the rst 3 is the dimension of the space and the latter is # freedom of
movement in 3-space.

A polyhedral model was introduced in a doctoral research at Qu@e University Belfast
guided by Cecil Armstrong onaircraft stress load evaluation and optimization

The essential problem is to detect the most critical parts of aircfes against a set of
many likely stresses, which is reduced to the redundancy removallinear inequality
systems, the theme of Section 8.2.

To analyze thee ects of United Nations peacekeeping operations , the danger
of using the high dimensional analysis is pointed out in a paper by politicacientists
in [46], after a few researchers in computational geometry includingyself presented
counter-intuitive facts in higher dimensional spaces. In particulaione serious problem
of estimating the e ect of a future operation, a relatively small sebf past instances
represented by high dimensional points cannot be a reliable guidancee to the fact
that a new point will most likely be (far) outside of the convex hull of the past
data points , and thus a wild extrapolation occurs at a high probability.

Future. From my personal involvements in polyhedral computation during tb past 24
years, once reliable and e cient codes of polyhedral computationdzome available,
new users might show up from any eld of science, engineering, humitees and even
arts. Thus, the main purpose of writing this book is to present theuhdamental theory
of polyhedra and the basic computational problems associated plogdra with most
e cient algorithmic techniques. My belief is that interesting applications should follow
once researchers have easy access to the theory and compomal codes. After all,
convex polyhedra appear almost everywhere, implicitly or explicitly.
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15 Literatures and Software

Course materials will be distributed as pdf les from our course welage.

For the theory of linear programming, recommended sources aré&[44,[24]. Some of the
excellent books on combinatorial optimization are |16, 31, '48]. Theaee excellent books on
convex polyhedra, see |39, B2,151]. For good discussions on algonit and combinatorial
aspects of polyhedra, see 41,137, 34]. The standard text on otgghmatroids is [9], and an
excellent introduction is included in the dissertation[[21] which is avaitde online.

We use some of the freely available software packages suclrgl® [2] andcddlib [22]
for polyhedral representation conversion.
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