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1 Sylvester’s Problem

The underlying question to the Sylvester-Gallai Theorem has already been
posed by Sylvester in 1893: ”Let a finite set of points in the plane have the
property that the line through any two of them passes through a third point
of the set. Must all the points lie on one line?”

Figure 1: Does a set of noncollinear points always allow a line through exactly
two points? This question (posed by Erdös, 1943) is equivalent to the initial
one.

The answer is yes, at least for the ordinary real plane, which was proved
about half a century later by various mathematicians. Other results may
occur for some finite geometries or the complex case.

Definition: Let P = {p1, p2, ..., pn}, n ≥ 3 be a set of noncollinear points in
the plane. A line that contains two or more points of P is called a connecting
line and is ordinary, if it contains exactly two points.

Theorem 1.1: (Sylvester-Gallai)
Every such set P determines at least one ordinary line.

2 Various Proofs

2.1 Proof by Gallai (1944)

This affine proof was one of the first and gave name to the theorem. It was
established by Gallai in 1944. First we introduce the concept of a projective
transformation, which is key to the proof.

Let’s denote the i-dimensional Euclidean space as Ei then we can define:
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Definition: A projective transformation is a mapping Θ : Ei → Ej of the
form Θ(x) = Ax+b

cT x+d
, for a linear map A, vectors b, c and a scalar d.

Example: Let P ⊆ E2 be a set like in figure 2. We apply the transformation

Figure 2: The set P consists of points p1, ..., p7. The red lines indicate
ordinary lines in P through the point p5. Green lines are ordinary lines not
through p5.

Θ1

(
x
y

)
= 1

x−y

(
x+ 2y + 20
3x+ 4y − 20

)
on every point pi ∈ P . This corresponds to

a projective transformation with A =

(
1 2
3 4

)
, b =

(
20
−20

)
, c =

(
1
−1

)
and

d = 0. If we transform P by Θ1, then the whole line x = y, including p5, is
projected to infinity. The projective image Θ1(P ) then looks like in figure 3.

We immediately see that in the projective image the lines containing p5 are
all parallel to x = y and that collinear points in P still lie on a common
connecting line.

That collinearity is also preserved for general sets P will be verified hereafter
in Corollary 2.1 and Lemma 2.2.
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Figure 3: The projective image Θ1(P )

Definition: A set P̂ ⊆ E2 is called affinely dependent, if there exists a com-
bination of p1, ..., pr ∈ P̂ and λ1, ..., λr ∈ R, such that λ1p1 + ... + λrpr = 0
and λ1 + ...+ λr = 0.

Corollary 2.1: A set P̂ = {p1, p2, p3} is affinely dependent, if and only if it
is collinear.
Proof: If and only if P̂ is collinear, we can choose λ1, λ2 ∈ R − {0}, such
that λ1(p1 − p3) + λ2(p2 − p3) = 0. Moreover for λ3 = −(λ1 + λ2) we have:

0 = λ1(p1 − p3) + λ2(p2 − p3)
= λ1p1 + λ2p2 − (λ1 + λ2)p3

= λ1p1 + λ2p2 + λ3p3.

(2.1)

Hence P̂ fulfills the definition of affine dependence if and only if it is collinear.

Lemma 2.2: If P̂ is an affinely dependent set of points in E2 and cTp+d 6= 0
for all p ∈ P̂ , then Θ(P̂ ) is affinely dependent too.
Proof: See [McMullen], page 19-20.

From Corollary 2.1 and Lemma 2.2 we derive that every three collinear points
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in P are still collinear after the projective transformation. In other words,
Θ maps connecting lines on connecting lines.

We now give Gallai’s proof of the Silvester-Gallai theorem:

Proof: (Theorem 1.1)
Choose any point p1 ∈ P . If it is on an ordinary line we are done. Otherwise
we project a line through p1, which doesn’t intersect with other points in
P , to infinity. As we have seen before, this leaves collinear points collinear
and the lines through p1 form a set of parallel lines. The following corollary
determines an ordinary line and finishes the proof.

Corollary 2.3: The connecting line l not through p1 that includes the small-
est angle a with the set of connecting lines containing p1 is ordinary.

Figure 4: The (green) line l has to be ordinary. Otherwise there existed a
third point on the line pjp1, which allows for a line l∗ with smaller angle a∗.

Proof: Suppose not, then l has at least three points pi, pj, pk ∈ P on it.
Each of them again lies on a connecting line through p1 which is not ordinary.
Hence we end up in a situation like in figure 4. In that case, we can always
construct a line l∗ with a smaller angle a∗. With that contradiction we have
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proved the corollary.

2.2 Proof by Kelly (1948)

This Euclidean proof by Kelly in 1948 is quite simple and illustrative:

Consider again the noncollinear finite set P . Let S(P ) be the set of con-
necting lines in P . For a p ∈ P and a s ∈ S(P ) not containing p one can
determine a perpendicular distance of point p to line s. Denote (s∗, p∗) as the
pair with the smallest such distance, then s∗ has to be ordinary. Otherwise
one finds a smaller distance (see figure 5).

Figure 5: If s∗ wouldn’t be ordinary, there existed a pair (s′, p′) with smaller
distance.

2.3 Proof by Steinberg (1944)

The projective proof of Steinberg in 1944 was a springboard for later devel-
opments:

Let P and S(P ) be as before. Choose a p ∈ P , if it is on an ordinary line,
we are done. Otherwise choose a line l, such that l ∩ P = {p}. Denote the
finite intersection points l ∩ S(P ) cyclically as x1, ..., xk, such that there lies
no other xj in the segment [p, x1]. Then the line s ∈ S(P ) that intersects l in
point x1 must be ordinary. Otherwise one could find another point in [p, x1]
(see figure 6).
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Figure 6: Assume s is not ordinary. Denote the points on s as p1, p2 and
p3. If the (grey) line through p1 and p is not ordinary, then it allows for
a configuration where a (red) line intersects l in the segment [p, x1]. This
contradiction finishes the proof.

3 Proofs of the Dual Theorem

If we denote the number of ordinary lines determined by P as m(P ) and
define m(n) = min

|P |=n
m(P ), Sylvester’s theorem states:

m(n) ≥ 1, for n ≥ 3. (3.1)

Melchior (1940) and others even proved a stronger statement:
Theorem 3.1: m(n) ≥ 3, for n ≥ 3

The duality that is used for the proof is introduced next.

3.1 The Duality

We can translate the definitions and notations from before by using the du-
ality from figure 7:

a) P is a finite set of points not all on one line
b) a connecting line (determined by P ) contains two or more points of P
c) S(P ) is the set of connecting lines determined by P
d) an i-line, i ≥ 2, is a connecting line containing exactly i points of P
e) a 2-line is called ordinary
f) ti(P ) denotes the number of i-lines determined by P
g) |S(P )| =

∑
i≥2

ti(P )

h) m(P ) = t2(P )
i) m(n) = min

|P |=n
m(P )
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Figure 7: The point configuration in 1) is dual to the one-sphere arrangement
in 5). One sees that by constructing vectors (pi, 1) and cutting the orthogonal
hyperplanes with the unit sphere.
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In the dual configuration this corresponds to:

a) L is a finite set of lines not all through one point
b) a point of intersection (determined by L) lies on two or more lines of L
c) V (L) is the set of points of intersection determined by L
d) an i-point, i ≥ 2, is a point lying on exactly i lines of L
e) a 2-point is called simple
f) vi(L) denotes the number of i-points determined by L
g) |V (L)| =

∑
i≥2

vi(L)

h) m′(L) = v2(L)
i) m′(n) = min

|L|=n
m′(L)

If L is the dual of P we therefore have:

vi(L) = ti(P ). (3.2)

This property is used to derive Melchior’s proof of the Sylvester-Gallai the-
orem.

3.2 Proof by Melchior(1940)

For this proof we consider the set L. We denote the points, edges and faces
in the sphere arrangement as V (L), E(L) and F (L). These numbers satisfy
the Euler-Poincaré formula for the real projective plane, which is:

V (L)− E(L) + F (L) = 1. (3.3)

Let fi(L) be the number of faces having exactly i sides, then:

V (L) =
∑
i≥2

vi(L),

F (L) =
∑
i≥3

fi(L),

2E(L) =
∑
i≥3

ifi(L) = 2
∑
i≥2

ivi(L).

(3.4)

Example: Let L be a set like in figure 8. Then one can calculate:

V (L) = v2(L) + v3(L) = 3 + 1 = 4,

F (L) = f3(L) = 6,

2E(L) = 3f3(L) = 2[2v2(L) + 3v3(L)] = 2(6 + 3) = 18.

(3.5)
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And we can verify Euler-Pointcaré: V (L)− E(L) + F (L) = 4− 9 + 6 = 1.

Figure 8: Example of counting points, faces and edges in the real projective
plane.

Proof : (Theorem 3.1)
Starting with Euler-Pointcaré we get:

3 = 3V (L)− E(L) + 3F (L)− 2E(L),

= 3
∑
i≥2

vi(L)−
∑
i≥2

ivi(L) + 3
∑
i≥3

fi(L)−
∑
i≥3

ifi(L),

=
∑
i≥2

(3− i)vi(L) +
∑
i≥3

(3− i)fi(L) ,

(3.6)

which we can rewrite to:

v2(L) ≥ 3 +
∑
i≥4

(i− 3)vi(L). (3.7)

By duality we get:

t2(P ) ≥ 3 +
∑
i≥4

(i− 3)ti(P ) = 3 + t4(P ) + 2t5(P ) + 3t6(P ) + ... (3.8)

Hence, this proves the equation (4.2) which is even stronger than the ordinary
Sylvester-Gallai theorem.
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